Cho tam giac ABC.goi M la trung diem cua canh AC,tren tia BM lay diem N sao cho M la trung diem cua doan BN
Chung minh: a) CN vuong goc voi AC va CN=AB
b)AN=BC va AN / /BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) CN vuông góc với AC là sai
Mình sẽ chứng minh CN=AB
Xét tam giác AMB và tam giác CMN có
AM=MC( gt)
góc AMB= góc CMN (đối đỉnh)
MB=MN (gt)
=> tam giác AMB = Tam giác CMN (c.g.c)
=> AB=CN (2 cạnh tương ứng)
b)Xét tam giác AMN và tam giác CMB có
AM=MC (gt)
góc AMN= góc CMB (đối đỉnh )
MN=BM (gt)
=> tam giác AMN= tam giác CMB( c.g.c)
=> AN=BC ( 2 cạnh tương ứng)
góc NAM= góc BCM (2 góc tương ứng) mà 2 góc này ở vị trí so le trong
=> AN// BC
Bài 6:
b) Theo câu a) ta có \(\Delta ABD=\Delta HBD.\)
=> \(\widehat{ADB}=\widehat{HDB}\) (2 góc tương ứng).
Ta có: \(\widehat{ADB}+\widehat{HDB}=\widehat{ADH}\left(gt\right)\)
=> \(\widehat{ADB}+\widehat{HDB}=120^0\)
Mà \(\widehat{ADB}=\widehat{HDB}\left(cmt\right)\)
=> \(2.\widehat{ADB}=120^0\)
=> \(\widehat{ADB}=120^0:2\)
=> \(\widehat{ADB}=60^0.\)
=> \(\widehat{ADB}=\widehat{HBD}=60^0\)
Xét \(\Delta ABD\) có:
(định lí tổng ba góc trong một tam giác).
=> \(90^0+\widehat{ABD}+60^0=180^0\)
=> \(150^0+\widehat{ABD}=180^0\)
=> \(\widehat{ABD}=180^0-150^0\)
=> \(\widehat{ABD}=30^0\)
Vậy \(\widehat{ABD}=30^0.\)
Chúc bạn học tốt!
Bài 2:
a) Xét 2 \(\Delta\) \(ABM\) và \(CNM\) có:
\(AM=CM\) (vì M là trung điểm của \(AC\))
\(\widehat{AMB}=\widehat{CMN}\) (vì 2 góc đối đỉnh)
\(BM=NM\) (vì M là trung điểm của \(BN\))
=> \(\Delta ABM=\Delta CNM\left(c-g-c\right).\)
=> \(AB=CN\) (2 cạnh tương ứng)
=> \(\widehat{BAM}=\widehat{NCM}\) (2 góc tương ứng)
Ta có: \(\widehat{BAM}+\widehat{NCM}=180^0\) (vì 2 góc kề bù)
Mà \(\widehat{BAM}=90^0\left(gt\right)\)
=> \(90^0+\widehat{NCM}=180^0\)
=> \(\widehat{NCM}=180^0-90^0\)
=> \(\widehat{NCM}=90^0.\)
=> \(\widehat{BAM}=\widehat{NCM}=90^0\)
=> \(CN\perp AB.\)
b) Xét 2 \(\Delta\) \(AMN\) và \(CMB\) có:
\(AM=CM\) (như ở trên)
\(\widehat{AMN}=\widehat{CMB}\) (vì 2 góc đối đỉnh)
\(MN=MB\) (như ở trên)
=> \(\Delta AMN=\Delta CMB\left(c-g-c\right)\)
=> \(AN=BC\) (2 cạnh tương ứng)
=> \(\widehat{ANM}=\widehat{CBM}\) (2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong.
=> \(AN\) // \(BC.\)
Chúc bạn học tốt!
a: Xét tứ giác ANCB có
M là trung điểm của AC
M là trung điểm của BN
Do đó; ANCB là hình bình hành
Suy ra: CN//AB và CN=AB
=>CN⊥AC
b: Ta có: ANCB là hình bình hành
nên AN=BC và AN//BC
Tớ chỉ có thể trả lời 2 câu thôi( câu c tớ bó)
a.tg ABM va tg NMC có:
AB=MC(M là trung điểm)
AM=MN(M là trung điểm)
góc AMB=NMC(đối đỉnh)
suy ra:tg AMB=NMC(cgc)
b.có tg ABM=NMC(theo câu a), suy ra:góc ABC=góc BCN(2 góc tương ứng) suy ra AB//CN suy ra:góc BDC=góc DCN=90 độ