CHo Tam giác ABC có 3 góc nhọn. Đường cao AH, trung tuyến BM, phân giác CN. Gọi P,Q,R là giao điểm của AH và BM; BM và CN; CN và AH. CM nếu P,Q,R tạo thành tam giác thì tam giác đó không đều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta BMC:\widehat{BMC}=90^0;OB=OC\Rightarrow OM=OB=OC\Rightarrow\widehat{OMC}=\widehat{ACB}\left(1\right)\)(do tam giác OMC cân)
\(\Delta AMH:\widehat{AMH}=90^0;AI=HI\Rightarrow AI=HI=IM\Rightarrow\widehat{IAM}=\widehat{IMA}\left(2\right)\)(do tam giác IAM cân)
\(\left(1\right),\left(2\right)\Rightarrow\widehat{IMA}+\widehat{OMC}=\widehat{IAM}+\widehat{OCM}=90^0\Rightarrow\widehat{IMO}=90^0\)
Tương tự thì \(\widehat{INO}=90^0\)
Suy ra \(\widehat{NIM}+\widehat{NOM}=180^0\left(DPCM\right)\)
a: Xet ΔAMB vuông tại M và ΔANC vuông tại N có
góc MAB chung
=>ΔAMB đồng dạng với ΔANC
=>AM/AN=AB/AC
=>AM*AC=AN*AB; AM/AB=AN/AC
b: Xet ΔAMN và ΔABC co
AM/AB=AN/AC
góc A chung
=>ΔAMN đồng dạng với ΔABC
c: góc MPH=góc ACN
góc NPH=góc ABM
góc ACN=góc ABM
=>góc MPH=góc NPH
=>PH là phân giác củagóc MPN
Gọi F là giao điểm của AD và BC, I là giao điểm của AH và NE. Áp dụng định lí Ceva với tam giác ABc và chú ý MC = MA, ta có:
\(1=\frac{NA}{NB}.\frac{FB}{FC}.\frac{MC}{MA}=\frac{NA}{NB}.\frac{FB}{FC}.1\)
Do đó \(\frac{AN}{BN}=\frac{CF}{BF}\) (1)
Theo định lí Thales đảo thì NF // AC
Từ (1) theo t/c tỉ lệ thức:
\(\frac{AN}{AB}=\frac{AN}{AN+BN}=\frac{CF}{CF+BF}=\frac{CF}{CB}\left(2\right)\)
Áp dụng định lí Menelaus cho các tam giác BEN và BEF, ta có:
\(\frac{IE}{IN}.\frac{AN}{AB}.\frac{HB}{HE}=1=\frac{DE}{DF}.\frac{CF}{CB}.\frac{HB}{HE}\left(3\right)\)
Từ (2) và (3) suy ra \(\frac{IE}{IN}=\frac{DE}{DF}\)
Do đó, theo định lí Thales đảo, NF // ID (4)
Từ (2) và (4) với chú ý AC vuông góc AN, suy ra ID vuông góc AN.
Kết hợp ND \(\perp\) AI => AD \(\perp\)NI.
Do vậy ^NEA = 90o