x/15=y/20=z/28 và 2x+3y-2z=186
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)
⇒ \(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)
⇒\(\left\{{}\begin{matrix}x=3.15=45\\y=3.20=60\\z=3.28=84\end{matrix}\right.\)
Ta có: \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)
=> \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=3\)
=> \(\left\{{}\begin{matrix}x=45\\y=60\\z=84\end{matrix}\right.\)
ta có : 2x+3y-2=186 \(\Rightarrow\)2x+3y=188
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y}{2.15+3.20}=\frac{188}{90}=\frac{94}{45}\)( AD tc của dãy tỉ số = nhau)
x=\(\frac{94}{45}.15=\frac{94}{3}\)
y=\(\frac{94}{45}.20=\frac{376}{9}\)
z=\(\frac{94}{45}.28=\frac{2632}{45}\)
vậy(x,y,z)=(\(\frac{94}{3};\frac{376}{9};\frac{2632}{45}\))
a,Ta có:\(2x+3y-2=186\Rightarrow2x+3y=188\)
AD t/c DTS bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y}{2.15+3.20}=\frac{188}{90}=\frac{94}{45}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{15}=\frac{94}{45}\Rightarrow x=\frac{94}{3}\\\frac{y}{20}=\frac{94}{45}\Rightarrow x=\frac{376}{9}\\\frac{z}{28}=\frac{94}{45}\Rightarrow x=\frac{2632}{45}\end{cases}}\)
b,Ta có:\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
AD t/c DTS bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{18}=\frac{2x+3y-z}{2.15+3.20-18}=\frac{372}{62}=6\)
Tự tìm x
c,\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Tự áp dụng
ta có:\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=>\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)
dựa vào tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2x}{30}+\frac{3y}{60}-\frac{z}{28}=\frac{186}{62}=3\)
=> x=3.15=45
=>y=3.20=60
=>z=3.28=84
vậy x=....y=....z=....
Ta có: x/15=y/20=z/28 <=> 2x/30=3y/60=z/28
Áp dụng tính chất dãy tỉ số bằng nhau có: 2x/30=3y/60=z/28=(2x+3y-z)/(30+60-28)
= 186/62 = 3
Do đó: x/15=3 => x=3.15=45
y/20=3 => y=3.20=60
z/28=3 => z=3.28=84
Vậy x=45; y= 60; z= 84
b. Câu hỏi của Nguyen Hai Bang - Toán lớp 7 - Học toán với OnlineMath
Câu a bạn Nguyễn Thị Anh đã trả lời, mình trả lời câu c.
b) Câu này bạn ghi sai đề rồi!
c) Ta có: x/3 = y/4 => x/15 = y/20
y/5 = z/7 => y/20 = z/28
=> x/15 = y/20 = z/28
Áp dụng tính chất dãy tỉ số bằng nhau:
=> x/15 = y/20 = z/28 = 2x/30 = 3y/60 = 2x + 3y - z / 30 + 60 - 28 = 186/62 = 3
x/15 = 3 => x = 15 . 3 = 45
y/20 = 3 => y = 20 . 3 = 60
z/28 = 3 => z = 28 . 3 = 84
Vậy x = 45; y = 60; z = 84.
a)Vì \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)nên \(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{x}{28}\).
Áp dụng t/c dãy tỉ số = nhau, ta có :
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)
⇒2x = 3.30 = 90 ⇒ x = 45
3y = 3.60 = 180 ⇒ y = 60
z = 3.28 = 84
Ý b) có gì đó sai sai ?
c)Ta có :
\(2x=3y=5z\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
Áp dụng t/c dãy tỉ số = nhau, ta có :
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)
⇒x = 5.15 = 75
y = 5.10 = 50
z = 5.6 = 30
d)Ta có :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\left(k\in Z\right)\)
⇒ x = 2k ; y = 3k ; z = 5k
⇒ xyz = 2k.3k.5k = 30k3 = 810
⇒ k = 3 Vậy x = 3.2 = 6; y = 3.3 = 9; z = 3.5 = 15Answer:
1.
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
\(\Rightarrow2\frac{x}{30}=3\frac{y}{60}=\frac{z}{28}\)
Áp dụng tính chất của dãy tỷ số bằng nhau
\(2\frac{x}{30}+3\frac{y}{60}+\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=3\)
\(\Rightarrow2\frac{x}{30}=3\Rightarrow x=45\)
\(\Rightarrow3\frac{y}{60}=3\Rightarrow y=60\)
\(\Rightarrow\frac{z}{28}=3\Rightarrow z=84\)
2.
Ta đặt: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)
\(\Rightarrow x=2k\)
\(\Rightarrow y=3k\)
\(\Rightarrow z=4k\)
\(\Rightarrow xyz=2k.3k.4k=24.k^3=648\)
\(\Rightarrow k^3=27\Rightarrow k=3\)
\(\Rightarrow\frac{x}{2}=3\Rightarrow x=6\)
\(\Rightarrow\frac{y}{3}=3\Rightarrow y=9\)
\(\Rightarrow\frac{z}{4}=3\Rightarrow z=12\)
3.
\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(4x=2z\Rightarrow\frac{x}{2}=\frac{z}{4}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và \(x+y+z=27\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=3\)
\(\Rightarrow\frac{x}{2}=3\Rightarrow x=6\)
\(\Rightarrow\frac{y}{3}=3\Rightarrow y=9\)
\(\Rightarrow\frac{z}{4}=3\Rightarrow z=12\)
giải đc ko