Cho tam giác ABC vuông tại A và tan C = 2,4. Tính sin C, cos C, cot C.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Pitago:
\(AB=\sqrt{BC^2+AC^2}=15\left(cm\right)\)
\(sinA=\dfrac{BC}{AB}=\dfrac{12}{15}=\dfrac{4}{5}\)
\(cosB=\dfrac{BC}{AB}=\dfrac{4}{5}\)
\(tanA=\dfrac{BC}{AC}=\dfrac{12}{9}=\dfrac{4}{3}\)
\(cotB=\dfrac{BC}{AC}=\dfrac{4}{3}\)
Áp dụng định lí Pytago vào ΔABC vuông tại C, ta được:
\(AB^2=CA^2+CB^2\)
\(\Leftrightarrow AB^2=9^2+12^2=225\)
hay AB=15(cm)
Xét ΔABC vuông tại C có
\(\sin\widehat{A}=\dfrac{CB}{AB}=\dfrac{12}{15}=\dfrac{4}{5}\)
\(\cos\widehat{B}=\dfrac{CB}{AB}=\dfrac{12}{15}=\dfrac{4}{5}\)
\(\tan\widehat{A}=\dfrac{CB}{CA}=\dfrac{12}{9}=\dfrac{4}{3}\)
\(\cot\widehat{B}=\dfrac{CB}{CA}=\dfrac{12}{9}=\dfrac{4}{3}\)
ta có:
. \(\hept{\begin{cases}tan\alpha=\frac{sin\alpha}{cos\alpha}\\cot\alpha=\frac{cos\alpha}{sin\alpha}\\tan\alpha\times cot\alpha=1\end{cases}}\)
\(\cos\widehat{B}=\sqrt{1-0.28^2}=\dfrac{24}{25}\)
\(\tan\widehat{B}=\dfrac{7}{24}\)
\(\cot\widehat{B}=\dfrac{24}{7}\)
Tính AH: AH2 = BH * CH
=> AH = 12
Tính AB : AB2 = AH2 + BH2
=> AB = 15
sin C = \(\frac{AB}{BC}\)
AC2 = BC2 - AB2
=> AC= 20
Cos C = \(\frac{AC}{BC}\)
Tan B = \(\frac{AC}{AB}\)
Mình chỉ viết gợi ý thôi, k chi tiết lắm
ta có BC = BH + HC = 9 + 16 = 25
\(\Delta\)ABC vuông tại A có đường cao AH
AB^2 = BH.BC = 9.25 =225
=> AB = 15
AC^2 = HC.BC = 16.25 = 400
=> AC = 20
sin C = \(\frac{AB}{BC}\)= \(\frac{15}{25}\)=\(\frac{3}{5}\)
cos C =\(\frac{AC}{BC}=\frac{20}{25}=\frac{4}{5}\)
tan B = \(\frac{AC}{AB}\frac{20}{15}\frac{4}{3}\)
\(\cot\widehat{C}=\dfrac{5}{12}\)
\(\sin\widehat{C}=\dfrac{12}{13}\)
\(\cos\widehat{C}=\dfrac{5}{13}\)
Cái chỗ sin C tính sao vậy bạn? Mình không biết