BÀI 1 cho tam giác ABC vuông tại A.Kẻ BD là phân giác của góc B.Kẻ AI vuông góc BD tại I.AI cắt BC tại E
a) chứng minh AB=EB
b) chứng minh tam giác BED vuông
c) DE cắt AB tại F, chứng minh AE//FC
BÀI 2 cho tam giác ABC cân tại A, có BD và CE là hai đường trung tuyến cắt nhau tại I
a) chứng minh tam giác IBC cân
b)lấy O thuộc tia IC sao cho IO=IE.Gọi K là trung điểm của IA.Chứng minh AO, BD, CK đồng quy
BÀI 3 cho tam giác ABC cân tại A, kẻ tia phân giác của góc BAC cắt BC tại H.Biết AB=15cm, BC=18cm
a)so sánh góc A và góc C
b)chứng minh rằng tam giác ABH = tam giác ACH
c)vẽ trung tuyến BD của tam giác ABC cắt AH tại G.Chứng minh rằng: tam giác AEG = tam giác ADG
d)tính độ dài AG
e) kẻ đường thẳng CG cắt AB ở E, chứng minh rằng: tam giác AEG = tam giác ADG
BÀI 4 cho tam giác ABC vuông tại A, trên BC lấy điểm D sao cho BA=BD.Qua D kẻ đường vuông góc với BC cắt AC tại E, qua C kẻ đường vuông góc với BE tại H cắt AB tại F
a)chứng minh tam giác ABE = tam giác DBE
b) chứng minh tam giác BCF cân
c) chứng minh 3 điểm F.D,E thẳng hàng
d)trên cạnh CB lấy điểm M sao cho CA=CM.Tính số đo góc DAM
BÀI 5 cho tam giác ABC cân tại A, kẻ BD vuông góc AC, kẻ CE vuông góc AB, BD và CE cắt nhau tại I
a)chứng minh rằng tam giác BDC = tam giác CEB
b)so sánh góc IBE và góc ICD
c) đường thẳng AI cắt BC tại H, chứng minh AI vuông góc BC tại H
BÀI 6 cho tam giác ABC vuông tại A, biết AB=6cm, AC=8cm
a)tính BC
b)trung trực của BC cắt AC tại D và cắt AB tại F, chứng minh góc DBC=DCB
c) trên tia đối của tia DB lấy E sao cho DE=DC, chứng minh tam giác BCE vuông và DF là phân giác góc ADE
d) chứng minh BE vuông góc FC
Câu 1
Ta có : \(\widehat{B}=\widehat{ACB}\)
\(\Rightarrow\widehat{ACB}=75^0\)
\(\Delta HCB\)vuông tại H có :
\(\widehat{B}+\widehat{HCB}=90^0\)
\(\Rightarrow75^0+\widehat{HCB}=90^0\)
\(\Rightarrow\widehat{HCB}=90^0-75^0\)
\(\Rightarrow\widehat{HCB}=15^0\)
Mà \(\widehat{ACB}=\widehat{HCB}+\widehat{ECD}\)
\(75^0=15^0+\widehat{ECD}\)
\(\Rightarrow60^0=\widehat{ECD}\)
\(\Delta AHC\)là nửa tam giác đều
=> 2CH=AC
Mà AC=AB ( \(\Delta ABC\)cân tại A )
\(\Rightarrow2CH=AB\left(đpcm\right)\)
( đợi mk hc cách đăng câu tl bằng hình đã ... )
cÂU 3
Theo BĐT trog tam giác
MA+MB>AB
MB+MC>AC
MA+MC>AC
\(\Rightarrow2MA+2MB+2MC>AB+BC+AC\)
\(\Rightarrow MA+MB+MC>\frac{AB+BC+AC}{2}\left(đpcm\right)\)