Tìm các số nguyên x sao cho (x^2-1)(x^2-4)(x^2-7)(x^2-7)<10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x^2-1)(x^2-4)(x^2-7)(x^2-10)<0
=> có 3 thừa số âm, 1 thừa số dương
dĩ nhiên thừa so dương là thừa số lớn nhất trong biểu thức. vậy x^2-1 lớn nhất. => x^2 - 1 >0 thì x^2 >1
mặt khác, cũng có thể là 3 thừa so dương, 1 thừa số âm
dĩ nhiên thừa số âm là thừa số có giá trị nhỏ nhất trong biểu thức. vậy x^2-10 nhỏ nhất => x^2 - 10 <0 thì x^2 < 10
giới hạn vị trí của x^2, ta được:
10>x^2>1^2
=> x^2= {4;9}
nếu x^2=4 thì x^2-4=0 => biểu thức=0
vậy x^2=9 thì x={3;-3}
Câu hỏi của Futeruno Kanzuki - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo bài làm ở link này nhé!!!
Có: x2 - 10 < x2 - 7 < x2 - 4 < x2 - 1
Để tích trên < 0
TH1: (x2 - 1); (x2-4); (x2 - 7) cùng dương và (x2 - 10) âm
=> x2 - 10 < 0 và x2 - 7 > 0
=> x2 < 10 và x2 > 7
=> 7 < x2 < 10
=> x2 = 9
=> x = + 3 (TM)
TH2: (x2 - 1) dương và (x2 - 4); (x2 - 7); (x2 - 10) cùng âm
=> x2 - 1 > 0 và x2 - 3 < 0
=> x2 > 1 và x2 < 3
=> 1 < x2 < 3 (vô lí)
KL: x = + 3
Xét từng trường hợp 1
VD: x2-1 <0 và x2-4 > 0 hay ngược lại
Xét tất cả các thừa số rồi chọn kết quả là số nguyên
Bài làm
Ta có tích của 4 số x^2-10;x^2-7;x^2-4;x^2-1 là số âm nên phải có 1 hoặc 3 số âm,mà x^2-10<x^2-7<x^2-4<x^2-1
xét 2 TH
+)có 1 số âm,3 số dương
x^2-10<0<x^2-7=>7<x^2<10^2=>x^2=9=>x=+3
+)có 3 số âm,1 số dương
x^2-4<0<x^2-1=>1<x^2<4,mà a là số nguyên nên x không tồn tại
vậy x=+3
Đặt A=(x^2-1)*(x^2-4)*(x^2-7)*(x^2-10)
^-^Với x^2<=1
=>(x^2-1)<=0, (x^2-4)<0, (x^2-7)<0, (x^2-10)<0
=> A>=0 (loại)
^-^Với x^2>=10
=>x^2-1>0, x^2-4>0, x^2-7>0, x^2-10>=0
=>A>=0(loại)
=>1<x^2<10 Mà x^2 là số chính phương
=>x^2=4 hoặc x^2=9
Với x^2=4 =>A=3*0*(-3)*6...(thay vào bthuc)
<=>A=0(loại)
Với x^2=9 =>A=8*5*2*(-1)
<=>A=-80
=> A <0 (thỏa mãn)
x^2=9 => x=3 hoạc x=-3
Thấy đúng thì like nhá.............