Tìm hai số nguyên tố sao cho tổng và hiệu đều là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a, b, c, d là các số nguyên tố. (a>b)
Từ (*) ⇒ a > 2, a là số nguyên tố lẻ ⇒ c + b và d – b là số lẻ. Do b, c, d đều là số nguyên tố nên để c + b và d – b là số lẻ thì ⇒ b chẵn. Vậy b = 2
a. Bài toán đưa về dạng tìm một số nguyên tố a sao cho a – 2 và a + 2 cũng là số nguyên tố.
- Nếu a = 5 ⇒ a – 2 = 3; a + 2 = 7 đều là số nguyên tố
- Nếu a ≠ 5 . Xét 2 trường hợp
+ a chia 3 dư 1 ⇒ a + 2 chia hết cho 3 : không là số nguyên tố
+ a chia 3 dư 2 ⇒ a – 2 chia hết cho 3: không là số nguyên tố
Vậy chỉ có số nguyên tố a duy nhất thoả mãn là 5.
Hai số nguyên tố cần tìm là 5; 2
2 và 5
vì 5-2=3(số nguyên tố)
5+2=7(số nguyên tố)
Tick đúng cho mình nha
1) +) Nếu cả hai số nguyên tố đều > 3 => 2 số đó lẻ => tổng và hiệu của chúng là số chẵn => Loại
=> Trong hai số đó có 1 số bằng 2. gọi số còn lại là a
+) Nếu a = 3 : ta có 3 + 2 = 5 ; 3 -2 = 1, 1 không là số nguyên tố => Loại
+) Nếu > 3 thì có thể có dạng: 3k + 1 ( k \(\in\)N*) hoặc 3k + 2 (k \(\in\) N*)
Khi a = 3k + 1 => a+ 2 = 3k + 3 = 3.(k + 1) là hợp số với k \(\in\) N* => Loại
Khi a = 3k + 2 => a + 2 = 3k + 4 ; a - 2 = 3k . 3k; 3k + 4 đều là số nguyên tố với k = 1 . Với k > 1 thì 3k là hợp số nên Loại
Vậy a = 3. 1+ 2 = 5
Vậy chỉ có 2 số 2;5 thỏa mãn
Bài 1: p = 4
Bài 2: p =3
Bài 3. p = 2
Bài 4: ....... tự giải đi
Lần sau hỏi bài của lớp 6 thì đừng hỏi ở đây
Số 5 và 2 được ko?
Tổng và tích chứ nhỉ? E bị sai đề thì phải á