Chứng minh rằng 4n+1;5n+1 là 2 số nguyên tố cùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1.
\(10^{28}+8=\left(10^3\right)^{25}+8=8^{25}.125^{25}+8⋮8\)
Mặt khác:
\(10^{28}+8=10^{28}-1+9=\left(10-1\right).A+9=9A+9⋮9\)
\(\)Mà \(\left(8;9\right)=1\Rightarrow10^{28}+8⋮72\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Gọi biểu thức trên là $A$
Dễ thấy:
$3^{2^{4n+1}}$ lẻ, $2^{3^{4n+1}}$ chẵn, $5$ lẻ với mọi $n$ tự nhiên
Do đó $A$ chẵn hay $A\vdots 2(*)$
Mặt khác:
$2^4\equiv 1\pmod 5\Rightarrow 2^{4n+1}\equiv 2\pmod 5$
$\Rightarrow 2^{4n+1}=5k+2$ với $k$ tự nhiên
$\Rightarrow 3^{2^{4n+1}}=3^{5k+2}=9.(3^5)^k\equiv 9.1^k\equiv 9\pmod {11}$
Và:
$3^4\equiv 1\pmod {10}\Rightarrow 3^{4n+1}\equiv 3\pmod {10}$
do đó $3^{4n+1}=10t+3$ với $t$ tự nhiên
$\Rightarrow 2^{3^{4n+1}}=2^{10t+3}=8.(2^{10})^t\equiv 8.1^t\equiv 8\pmod{11}$
Do đó:
$A\equiv 9+8+5=22\equiv 0\pmod {11}$
Vậy $A\vdots 11(**)$
Từ $(*); (**)\Rightarrow A\vdots 22$ (do $(2,11)=1$)
![](https://rs.olm.vn/images/avt/0.png?1311)
Mọi số nguyên tố p lớn hơn 2 đều không chia hết cho 2
\(\Rightarrow\) p có dạng 2n+1 (k thuộc N, k > 0)
Xét 2 TH :
+ k chẵn(k = 2n) => p = 2k+1 = 2.2n + 1 = 4n+1
+ k lẻ (k = 2n-1) => p = 2k+1 = 2.(2n-1) + 1 = 4n-1
...Vậy p luôn có dạng 4n+1 hoặc 4n-1
![](https://rs.olm.vn/images/avt/0.png?1311)
Lần đầu tiên, trường hợp hợp lý khi p là một số chẵn. Vì p là số nguyên tố nên p không thể chia hết cho 2. Điều này đồng nghĩa với công việc p phải có dạng 4n + 2. If ta viết p = 4n + 2, ta có thể rút gọn thành p = 2(2n + 1). Như vậy, p chia hết cho 2, kiên cố với giả định rằng p là số nguyên tố. Do đó, giả thiết ban đầu là sai và p không thể là một số chẵn.
Tiếp theo, trường hợp hợp lý khi p là một số lẻ. Giả sử p không phải là dạng 4n + 1 hoặc 4n - 1. Ta nhận xét hai trường hợp hợp:
-
p có dạng 4n: If p = 4n, ta có thể rút gọn thành p = 2(2n). Như vậy, p chia hết cho 2, kiên cố với giả định rằng p là số nguyên tố. Do đó, giả thiết ban đầu là sai.
-
p có dạng 4n + 2: If p = 4n + 2, ta có thể rút gọn thành p = 2(2n + 1). Như vậy, p chia hết cho 2, kiên cố với giả định rằng p là số nguyên tố. Do đó, giả thiết ban đầu là sai.
Vì đã phản ánh cả hai trường hợp, ta kết luận rằng mọi số nguyên tố lớn hơn 2 đều có dạng 4n + 1 hoặc 4n - 1.
Lần đầu tiên, trường hợp hợp lý khi p là một số chẵn. Vì p là số nguyên tố nên p không thể chia hết cho 2. Điều này đồng nghĩa với công việc p phải có dạng 4n + 2. If ta viết p = 4n + 2, ta có thể rút gọn thành p = 2(2n + 1). Như vậy, p chia hết cho 2, kiên cố với giả định rằng p là số nguyên tố. Do đó, giả thiết ban đầu là sai và p không thể là một số chẵn.
Tiếp theo, trường hợp hợp lý khi p là một số lẻ. Giả sử p không phải là dạng 4n + 1 hoặc 4n - 1. Ta nhận xét hai trường hợp hợp:
-
p có dạng 4n: If p = 4n, ta có thể rút gọn thành p = 2(2n). Như vậy, p chia hết cho 2, kiên cố với giả định rằng p là số nguyên tố. Do đó, giả thiết ban đầu là sai.
-
p có dạng 4n + 2: If p = 4n + 2, ta có thể rút gọn thành p = 2(2n + 1). Như vậy, p chia hết cho 2, kiên cố với giả định rằng p là số nguyên tố. Do đó, giả thiết ban đầu là sai.
Vì đã phản ánh cả hai trường hợp, ta kết luận rằng mọi số nguyên tố lớn hơn 2 đều có dạng 4n + 1 hoặc 4n - 1.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì \(\lim \left( {\frac{{ - 4n + 1}}{n} + 4} \right) = \lim \frac{1}{n} = 0\) nên \(\lim \frac{{ - 4n + 1}}{n} = - 4.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Sửa đề : chứng minh rằng mọi số nguyên tố lớn hơn 2...
Câu hỏi của emily - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo cách làm ở link này nhé!
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có \(3^{2^{4n}+1}\) + 2 = 316n + 1 + 2 = 316n . 3 + 2 = ( 34 )4n . 3 + 2
= 814n . 3 + 2 = ( 814 )n . 3 + 2 = ( ...1 )n . 3 + 2 = ( ...1 ) . 3 + 2
= ( ...3 ) + 2 = ( ...5 )
Vì số có chữ số tận cùng là 5 chia hết cho 5 nên ( \(3^{2^{4n}+1}\) + 2 ) ⋮ 5
cái này dễ này em chỉ cần để ý và tìm ra đáp án:
để cm rằng 4n+1;5n+1 là 2 số nguyên tố cùng nhau => Cm bội của chúng thuộc 1
4n+1 chia hết cho 4n+1 => 5(4n+1)chia hết cho 4n+1
=>20n+5 chia hết cho 4n+1
5n+1 chia hết cho 5n+1
=> 4(5n+1) chia hết cho 5n+1
=> 20n+4 chia hết cho 5n+1
gọi UC ( 20n+5;20n+4) là d
=> 20n+5 chia hết cho d
20n+4 chia hết cho d
=> (20n+5)-(20n+4) chia hết cho d
=>1 chia hết cho d
=> d thuộc Ư ( 1)
Gọi d = UCLN(4n + 1; 5n + 1)
=> \(\hept{\begin{cases}4n+1⋮d\\5n+1⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}5.\left(4n+1\right)⋮d\\4.\left(5n+1\right)⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}20n+5⋮d\\20n+4⋮d\end{cases}}\)
=> (20n + 5) - (20n + 4) \(⋮\)d
=> 1 \(⋮\)d
=> UCLN(4n + 1; 5n + 1) = 1
Vậy 4n + 1 và 5n + 1 là 2 SNT cùng nhau