K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2015

Giải :

a) Điều kiện : x\(\ne\)5 ; x\(\ge\)2.

A = \(\frac{x-5}{\sqrt{x-2}-\sqrt{3}}\) = \(\frac{\left(x-5\right)\left(\sqrt{x-2}+\sqrt{3}\right)}{x-5}\) = \(\sqrt{x-2}+\sqrt{3}\) \(\ge\) 0 + \(\sqrt{3}\) = \(\sqrt{3}\) (vì \(\sqrt{x-2}\)\(\ge\)0).

Vậy GTNN của A là \(\sqrt{3}\) khi x = 2.

Tích rồi mình làm câu b) cho

24 tháng 7 2018

a) ĐKXĐ:  \(x>0;x\ne9\)

\(A=\left(\frac{1}{\sqrt{x}+3}+\frac{3}{x-9}\right).\frac{\sqrt{x}-3}{\sqrt{x}}\)

\(=\left(\frac{\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right).\frac{\sqrt{x}-3}{\sqrt{x}}\)

\(=\frac{\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}}\)

\(=\frac{1}{\sqrt{x}+3}\)

24 tháng 7 2018

b)  \(A=\frac{1}{5}\) \(\Rightarrow\)\(\frac{1}{\sqrt{x}+3}=\frac{1}{5}\)

\(\Rightarrow\)\(\sqrt{x}+3=5\)

\(\Leftrightarrow\)\(\sqrt{x}=2\)

\(\Leftrightarrow\)\(x=4\)(t/m ĐKXĐ)

Vậy...

AH
Akai Haruma
Giáo viên
1 tháng 7 2020

Lời giải:

ĐK để tồn tại các biểu thức là $x\geq 0$

a) Ta thấy: $\sqrt{x}\geq 0\Rightarrow \sqrt{x}+5\geq 5$

$\Rightarrow A=\frac{2}{\sqrt{x}+5}\leq \frac{2}{5}$

Vậy $A_{\max}=\frac{2}{5}$ khi $x=0$

b) $\sqrt{x}+7\geq 7$

$\Rightarrow \frac{1}{\sqrt{x}+7}\leq \frac{1}{7}$

$\Rightarrow B=\frac{-3}{\sqrt{x}+7}\geq \frac{-3}{7}$

Vậy $B_{\min}=\frac{-3}{7}$ khi $x=0$

c)

$2\sqrt{x}+1\geq 1\Rightarrow C=\frac{5}{2\sqrt{x}+1}\leq 5$

Vậy $C_{\max}=5$ khi $x=0$

d)

$3\sqrt{x}+2\geq 2\Rightarrow \frac{1}{3\sqrt{x}+2}\leq \frac{1}{2}$

$\Rightarrow D=\frac{-7}{3\sqrt{x}+2}\geq \frac{-7}{2}$

Vậy $B_{\min}=\frac{-7}{2}$ khi $x=0$