Chứng minh (a4+b4)(a6+b6)\(\le\)2(a10+b10)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét \(\left(\dfrac{a+b}{2}\right)^2-\dfrac{a^2+b^2}{2}=\)\(\dfrac{a^2+2ab+b^2-2\left(a^2+b^2\right)}{4}\)\(=\dfrac{-a^2+2ab-b^2}{4}\)\(=\dfrac{-\left(a-b\right)^2}{4}\le0\forall a;b\)
\(\Rightarrow\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\) (bạn ghi sai đề?)
Dấu = xảy ra <=> a=b
b) \(\left(a^{10}+b^{10}\right)\left(a^2+b^2\right)-\left(a^8+b^8\right)\left(a^4+b^4\right)\)
\(=a^{12}+a^{10}b^2+a^2b^{10}+b^{12}-\left(a^{12}+a^8b^4+a^4b^8+b^{12}\right)\)
\(=a^2b^2\left(a^8+b^8-a^6b^2-a^2b^6\right)\)
\(=a^2b^2\left(a^2-b^2\right)\left(a^6-b^6\right)=a^2b^2\left(a^2-b^2\right)^2\left(a^4+a^2b^2+b^4\right)\ge0\) với mọi a,b
=> \(\left(a^{10}+b^{10}\right)\left(a^2+b^2\right)\ge\left(a^8+b^8\right)\left(a^4+b^4\right)\)
Dấu = xảy ra <=>a=b
\(a^6+a^4+a^2b^2+b^4-b^6\\ =a^6-b^6+a^4+a^2b^2+b^4\\ =\left(a^6-b^6\right)+\left(a^4+a^2b^2+b^4\right)\\ =\left[\left(a^2\right)^3-\left(b^2\right)^3\right]+\left(a^4+a^2b^2+b^4\right)\\ =\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)+\left(a^2+a^2b^2+b^4\right)\\ =\left(a^2-b^2+1\right)\left(a^4+a^2b^2+b^4\right)\\ =\left(a^2-b^2+1\right)\left(a^4+2a^2b^2+b^4-a^2b^2\right)\\ =\left(a^2-b^2+1\right)\left[\left(a^2+b^2\right)^2-\left(ab\right)^2\right]\\ =\left(a^2-b^2+1\right)\left(a^2+b^2-ab\right)\left(a^2+b^2+ab\right)\)
CTDC: \(FeCl_n\left(\dfrac{1,27}{56+35,3n}\right)+AgNO_3\rightarrow AgCl\left(0,02\right)+Fe\left(NO_3\right)_2\)
Ta có: \(\left\{{}\begin{matrix}n_{FeCl_n}=\dfrac{1,27}{56+35,5n}\left(mol\right)\\n_{AgCl}=0,02\left(mol\right)\end{matrix}\right.\)
\(\Rightarrow\dfrac{1,27n}{56+35,5n}=0,02\)
\(\Rightarrow n=2\Rightarrow A_3:FeCl_2\)
Các chất A1, A2, A3, A4, A5, A6, A7, A8, A9, A10 ứng với PTHH sau:
A1 + A2 ===> A3 + A4
\(Fe+2HCl\rightarrow FeCl_2+H_2\uparrow\)
A3 + A5 ===> A6 + A7
\(FeCl_2+2NaOH\rightarrow Fe\left(OH\right)_2+2NaCl\)
A6 + A8 + A9 ===> A10
\(4Fe\left(OH\right)_2+2H_2O+O_2\rightarrow4Fe\left(OH\right)_3\)
A10 ===> A11 + A8 (đktc: nung nóng )
\(2Fe\left(OH\right)_3-t^o->Fe_2O_3+3H_2O\)
A11 + A4 ===> A1 + A8
\(Fe_2O_3+3H_2-t^o->2Fe+3H_2O\)
Ta có:
S=(a1+a2+a3)+(a4+a5+a6)+...+(a10+a11+a12)+a13=7
S=(-5)+(-5)+(-5)+(-5)+a13=7
S=(-20)+a13=7
=>a13=7-(-20)
=>a13=27
\(\Leftrightarrow a^{10}+a^4b^6+a^6b^4+b^{10}\le2a^{10}+2b^{10}\)
\(\Leftrightarrow a^{10}+b^{10}-a^4b^6-a^6b^4\ge0\)
\(\Leftrightarrow a^6\left(a^4-b^4\right)-b^6\left(a^4-b^4\right)\ge0\)
\(\Leftrightarrow\left(a^4-b^4\right)\left(a^6-b^6\right)\ge0\) (lđ)
Bởi 2 cái ngoặc kia luôn cùng âm hoặc cùng dương