K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2019

Lê Thanh Sắt bạn vào câu hỏi tương tự hoặc vào lick này nha !

Lick : Câu hỏi của Nguyễn Văn Cường - Toán lớp 6 - Học toán với OnlineMath

26 tháng 11 2019

bạn ơi mình nghĩ đề sai , hoặc thiếu vì mình nghỉ tất cả đều phải mủ chẳn

19 tháng 9 2024

calibudaicho

9 tháng 9 2018

12a chứ ko phải 120a đâu

11 tháng 9 2018

1/ A=12(10a+3b) chia heets cho 12

2/

a/ 2a+7b Chia hết cho 3 => 2(2a+7b)=4a+14b=4a+2b+12b Chia hết cho 3 mà 12 b Chia hết cho 3 nên 4a+2b cũng chia hết cho 3

b/ a+b chia hết cho 2 nên a+b chẵn mà a+3b=(a+b)+2b. Do a+b chẵn và 2b chẵn => a+3b chẵn => a+3b chia hết cho 2

10 tháng 9 2018

1)Ta có \(A=12.\left(10a+3b\right)\)( đã sửa 120b thành 120a )

\(a,b\in N\Rightarrow10a+3b\in N\)

Do đó\(12.\left(10a+3b\right)⋮12\)

Vậy\(A⋮12\)

2)

a) Ta có \(2a+7b=2a+b+6b=\left(2a+b\right)+6b\)chia hết cho 3

\(6b⋮3\)\(\left(2a+b\right)+6b⋮3\)nên \(2a+b⋮3\)\(A+B⋮C\)\(B⋮C\)\(\Rightarrow A⋮C\))

\(2a+b⋮3\Rightarrow2.\left(2a+b\right)⋮3\)\(\Rightarrow4a+2b⋮3\)

b) Ta có \(a+b⋮2\)lại có \(2b⋮2\)

nên \(\left(a+b\right)+2b⋮2\)hay\(a+3b⋮2\)

c) Ta có \(12a⋮12\);\(36b⋮12\)

nên \(12a+36b⋮12\)

Mà \(12a+36b=\left(11a+2b\right)+\left(a+34b\right)\)

nên \(\left(11a+2b\right)+\left(a+34b\right)⋮12\)

\(11a+2b⋮12\)\(\Rightarrow a+34b⋮12\)\(A+B⋮C\)\(B⋮C\)\(\Rightarrow A⋮C\))

d) 1\(12b⋮12\)là điều hiển nhiên nên thiếu giả thiết để chứng minh

P/S Sai đề rất nhiều, mong bạn trước khi đăng hãy kiểm tra lại đề hoặc xem thử có bị cô troll hay không

21 tháng 9 2015

b)=3^1+(3^2+3^3+3^4)+(3^5+3^6+3^7)+....+(3^58+3^59+3^60)

=3^1+(3^2.1+3^2.3+3^2.9)+(3^5.1+3^5.3+3^5.9)+......+(3^58.1+3^58.3+3^58.9)

=3^1+3^2.(1+3+9)+3^5.(1+3+9)+.....+3^58.(1+3+9)

=3+3^2.13+3^5.13+.........+3^58.13

=3.13.(3^2+3^5+....+3^58)

vi tich tren co thua so 13 nen tich do chia het cho 13

=

21 tháng 9 2015

bai1

a) A=(31+32)+(33+34)+...+(359+360)

=(3^1.1+3^1.3)+...+(3^59.1+3^59.2)

=3^1.(1+3)+...+3^59.(1+3)

=3^1.4+....+3^59.4

=4.(3^1+...+3^59)

vi tich tren co thua so 4 nen tich do chia het cho 4

22 tháng 11 2017

làm rồi mình k cho

bài này bạn nào làm sao mình biết mình ra đề rồi tự tính rồi

22 tháng 11 2017

Câu 1:

a, a+5b = (a+b)-6b

Vì \(\hept{\begin{cases}a+b⋮6\\6b⋮6\end{cases}\Rightarrow\left(a+b\right)-6b⋮6\Rightarrow a+5b⋮6}\)

b, a-13b = (a+b) - 12b

Vì \(\hept{\begin{cases}a+b⋮6\\12b⋮6\end{cases}\Rightarrow\left(a+b\right)-12b⋮6\Rightarrow a-13b⋮6}\)

Câu 2:

Ta có: 1028 + 8 = 100...0 (28 c/s 0) + 8 = 100....08 (27 c/s 0)

Vì 1+0+0+...+8 = 9 chia hết cho 9 nên 1028 + 8 chia hết cho 9 (1)

Lại có: 103 chia hết cho 8 => 1028 chia hết cho 8 và 8 chia hết cho 8

Do đó 1028 + 8 chia hết cho 8 (2)

Mà (8,9) = 1 (3)

Từ (1),(2),(3) => đpcm

Câu 3:

x chia 5 dư 1 => x - 1 chia hết cho 5

x chia 3 dư 1 => x - 1 chia hết cho 3

=> x - 1 thuộc BC(5,3)

Ta có 5 = 5 ; 3 = 3

BCNN(5,3) = 5.3 = 15

BC(5,3) = B(15) = {0;15;30;....}

=> x - 1 thuộc {0;15;30;...}

=> x thuộc {1;16;31;....}

18 tháng 1 2021

a)

Ta có: \(222^{333}=\left(222^3\right)^{111}\equiv1^{111}=1\left(mod13\right)\)

\(\Rightarrow222^{333}+333^{222}\equiv1+333^{222}=1+\left(333^2\right)^{111}\)

\(\equiv1+12^{111}\equiv1+12^{110}\cdot12\equiv1+\left(12^2\right)^{55}\cdot12\)

\(\equiv1+1\cdot12\equiv13\equiv0\left(mod13\right)\)

Vậy $222^{333}+333^{222}$ chia hết cho $13.$

b) Ta có:

\(3^{105}\equiv\left(3^3\right)^{35}\equiv1^{35}\equiv1\) (mod13)

\(\Rightarrow3^{105}+4^{105}\equiv1+4^{105}\equiv1+\left(4^3\right)^{35}\)

\(\equiv1+12^{35}\equiv1+\left(12^2\right)^{17}\cdot12\equiv1+1\cdot12\equiv13\equiv0\left(mod13\right)\)

Vậy $3^{105}+4^{105}$ chia hết cho $13.$

Lại có:

\(3^{105}\equiv\left(3^3\right)^{35}\equiv5^{35}\equiv\left(5^5\right)^7\equiv1\left(mod11\right)\)

\(4^{105}\equiv\left(4^3\right)^{35}\equiv9^{35}\equiv\left(9^5\right)^7\equiv1\left(mod11\right)\)

Từ đây:\(3^{105}+4^{105}\equiv1+1\equiv2\left(mod11\right)\)

Vậy $3^{105}+4^{105}$ không chia hết cho $11.$

P/s: Rất lâu rồi không giải, không chắc.