Cho a, b, c là ba số dương và a + b + c = 6. Chứng minh rằng:
\(\frac{a}{\sqrt{b^3+1}+1}+\frac{b}{\sqrt{c^3+1}+1}+\frac{c}{\sqrt{a^3+1}+1}\ge\frac{3}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{2a}{2\sqrt{\left(b+1\right)\left(b^2-b+1\right)}+2}+\frac{2b}{2\sqrt{\left(c+1\right)\left(c^2-c+1\right)}+2}+\frac{2c}{2\sqrt{\left(a+1\right)\left(a^2-a+1\right)}+2}\)
\(P\ge\frac{2a}{b^2+4}+\frac{2b}{c^2+4}+\frac{2c}{a^2+4}\)
\(2P\ge\frac{4a}{b^2+4}+\frac{4b}{c^2+4}+\frac{4c}{a^2+4}=a-\frac{ab^2}{b^2+4}+b-\frac{bc^2}{c^2+4}+a-\frac{ca^2}{a^2+4}\)
\(2P\ge a+b+c-\left(\frac{ab^2}{4b}+\frac{bc^2}{4c}+\frac{ca^2}{4a}\right)\)
\(2P\ge6-\frac{1}{4}\left(ab+bc+ca\right)\ge6-\frac{1}{12}\left(a+b+c\right)^2=3\)
\(\Rightarrow P\ge\frac{3}{2}\)
\("="\Leftrightarrow a=b=c=2\)
Bài 1: diendantoanhoc.net
Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) BĐT cần chứng minh trở thành
\(\frac{x}{\sqrt{3zx+2yz}}+\frac{x}{\sqrt{3xy+2xz}}+\frac{x}{\sqrt{3yz+2xy}}\ge\frac{3}{\sqrt{5}}\)
\(\Leftrightarrow\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}+\frac{y}{\sqrt{5x}\cdot\sqrt{3y+2z}}+\frac{z}{\sqrt{5y}\cdot\sqrt{3z+2x}}\ge\frac{3}{5}\)
Theo BĐT AM-GM và Cauchy-Schwarz ta có:
\( {\displaystyle \displaystyle \sum }\)\(_{cyc}\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}\ge2\)\( {\displaystyle \displaystyle \sum }\)\(\frac{x}{3x+2y+5z}\ge\frac{2\left(x+y+z\right)^2}{x\left(3x+2y+5z\right)+y\left(5x+3y+2z\right)+z\left(2x+5y+3z\right)}\)
\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+7\left(xy+yz+zx\right)}\)
\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(xy+yz+zx\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)
\(\ge\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(x^2+y^2+z^2\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)
\(=\frac{2\left(x^2+y^2+z^2\right)}{5\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]}=\frac{3}{5}\)
Bổ sung bài 1:
BĐT được chứng minh
Đẳng thức xảy ra <=> a=b=c
\(\frac{1}{a^2}+\frac{1}{b^2}=\frac{a}{a^3}+\frac{1}{b^2}\ge\frac{\left(\sqrt{a}+1\right)^2}{a^3+b^2}\ge\frac{4\sqrt{a}}{a^3+b^2}\)
Cứ tiếp tục như vậy ta sẽ có đpcm. dấu = xảy ra khi a=b=c=1
Ta có: Theo bất đẳng thức cauchy schwarz và bất đẳng thức cauchy với a;b;c>0 ta có:
\(\dfrac{1}{a^2}+\dfrac{1}{a^2}=\dfrac{\left(\sqrt{a}\right)^2}{a^3}+\dfrac{1}{a^2}\ge\dfrac{\left(\sqrt{a}+1\right)^2}{a^3+a^2}\ge\dfrac{4\sqrt{a}}{a^3+a^2}\)(1)
Tương tự \(\dfrac{1}{b^2}+\dfrac{1}{b^2}\ge\dfrac{4\sqrt{b}}{b^3+b^2}\left(2\right);\dfrac{1}{c^2}+\dfrac{1}{c^2}\ge\dfrac{4\sqrt{c}}{c^3+c^2}\left(3\right)\)
Cộng từng vế (1) ;(2);(3) vế theo vế rồi chia hai vế cho 2 ta có đpcm
ta có : \(\dfrac{1}{a^2}+\dfrac{1}{b^2}=\dfrac{a}{a^3}+\dfrac{1}{b^2}\ge\dfrac{\left(\sqrt{a}+1\right)^2}{a^3+b^2}=\dfrac{a^2+2\sqrt{a}+1}{a^3+b^2}\ge\dfrac{4\sqrt{a}}{a^3+b^2}\)
làm tương tự ta có : \(\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge\dfrac{4\sqrt{b}}{b^3+c^2}\) và \(\dfrac{1}{c^2}+\dfrac{1}{a^2}\ge\dfrac{4\sqrt{c}}{c^3+a^2}\)
cộng quế theo quế \(\Rightarrow\) (đpcm)
bạn làm sai rồi
cái dòng đầu tiên í
\(\dfrac{\left(\sqrt{a}+1\right)^2}{a^3+b^2}\ne\dfrac{a^2+2\sqrt{a}+1}{a^3+b^2}\)
Ta có: \(\frac{1}{a^2}+\frac{1}{b^2}=\frac{a}{a^3}+\frac{1}{b^2}\ge\frac{\left(\sqrt{a}+1\right)^2}{a^3+b^2}=\frac{a+2\sqrt{a}+1}{a^3+b^2}\ge\frac{4\sqrt{a}}{a^3+b^2}\)
Tương tự: \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{4\sqrt{b}}{b^3+c^2}\)
\(\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{4\sqrt{c}}{a^3+a^2}\)
Cộng từng vế: \(2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge2\left(\frac{2\sqrt{a}}{a^3+b^2}+\frac{2\sqrt{b}}{b^3+c^2}+\frac{2\sqrt{c}}{c^3+a^2}\right)\)
\(\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge\left(\frac{2\sqrt{a}}{a^3+b^2}+\frac{2\sqrt{b}}{b^3+c^2}+\frac{2\sqrt{c}}{c^3+a^2}\right)\)(đpcm)
\(P=\frac{2a}{2\sqrt{\left(b+1\right)\left(b^2-b+1\right)}+2}+\frac{2b}{2\sqrt{\left(c+1\right)\left(c^2-c+1\right)}+2}\)\(+\frac{2c}{2\sqrt{\left(a+1\right)\left(a^2-a+1\right)}+2}\)
\(P\ge\frac{2a}{b^2+4}+\frac{2b}{c^2+4}+\frac{2c}{a^2+4}\)
\(2P\ge\frac{4a}{b^2+4}+\frac{4b}{c^2+4}+\frac{4c}{a^2+4}=a-\frac{ab^2}{b^2+4}+b-\frac{bc^2}{c^2+4}+a-\frac{ca^2}{a^2+4}\)
\(2p\ge a+b+c-\left(\frac{ab^2}{4b}+\frac{bc^2}{4c}+\frac{ca^2}{4a}\right)\)
\(2P\ge6-\frac{1}{4}\left(ab+bc+ca\right)\ge6-\frac{1}{12}\left(a+b+c\right)^2=3\)
\(\Rightarrow P\ge\frac{3}{2}\)
Dấu " = " xảy ra khi \(a=b=c=2\)