K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2019

a,b,c là độ dài 3 cạnh của 1 tam giác nên:

\(\hept{\begin{cases}a< b+c\\b< c+a\\c< a+b\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2< ab+ac\\b^2< bc+ab\\c^2< ac+bc\end{cases}}\)

Cộng từng vế của các BĐT trên:

\(a^2+b^2+c^2< 2\left(ab+bc+ac\right)\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)\)\(< 4\left(ab+bc+ac\right)\)

\(\Rightarrow\left(a+b+c\right)^2\)\(< 4\left(ab+bc+ac\right)\)(đpcm)

13 tháng 5 2016

ta có: \(a^2\)+\(b^2\)+\(c^2\)\(\ge\)ab+bc+ca

<=> \(a^2\)+\(b^2\)+\(c^2\)-ab-bc-ca\(\ge\)0

<=>2\(a^2\)+2\(b^2\)+2\(c^2\)-2ab-2bc-2ca\(\ge\)0

<=> (\(a^2\)-2ab+\(b^2\))+(\(b^2\)-2bc+\(c^2\))+(\(c^2\)-2ca+\(a^2\))\(\ge\)0

<=> \(\left(a-b\right)^2\)+\(\left(b-c\right)^2\)+\(\left(c-a\right)^2\)\(\ge\)0 (luôn đúng)

dấu = xảy ra khi a =b=c

 

23 tháng 5 2016

 

ab<c<=>a2+b22ab<c2a−b<c<=>a2+b2−2ab<c2

bc<a<=>b2+c22bc<a2b−c<a<=>b2+c2−2bc<a2

ac<b<=>a2+c22ac<b2a−c<b<=>a2+c2−2ac<b2

Cộng các vế ta có

2(a2+b2+c2)2(ab+bc+ac)<a2+b2+c2<=>2(ab+ac+bc)>a2+b2+c22(a2+b2+c2)−2(ab+bc+ac)<a2+b2+c2<=>2(ab+ac+bc)>a2+b2+c2 (đpcm)

 
30 tháng 3 2017

nếu là \(a^2+b^2+c^2< 2\) thi minh lam dc                                    

18 tháng 4 2022

non vãi loonf đến câu này còn đéo bt ko bt đi học để làm gì

 

18 tháng 4 2022

đúng trẻ trâu

18 tháng 4 2016

Ta có (a+b)>=0 => a+ 2ab + b>= 0 => a2 + b>= 2ab. (1)

         (b+c)>=0 => b+ 2bc + c>= 0 => b2 + c>= 2bc. (2)

         (c+a)>=0 => c+ 2ca + a>= 0 => c2 + a>= 2ca. (3)

Cộng (1), (2), (3), theo vế ta có 2(a2 + b2 + c2)>=2(ab+bc+ca)

suy ra a2 + b2 + c2>=ab+bc+ca (*)

Áp dụng bất đẳng thức trong tam giác ta có:

a+b>c => ac+bc>c2. (4)

b+c>a => ab+ac>a2. (5)

c+a>b => bc+ab>b2. (6)

Cộng (4), (5), (6) theo vế ta có 2(ab+bc+ca)>a2+b2+c2(**)

Từ (*) và (**) suy ra đpcm.

12 tháng 12 2016

xfffff