K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3+3+...+3+3

Có 2019 số 3

=3x2019

=6057

Chúc bn học tốt

3+3+...+3+3(2019 số 3 ) 

= 3 x 2019

= 6057

7 tháng 4 2019

em ko biết làm

8 tháng 4 2019

thằng này láo

12 tháng 12 2020

2019:4 bằng 504 dư 3

nhóm tích của 4 chữ số 3 vào 1 nhóm ta có 504 nhóm và dư tích của 3 chữ số 3

ta có 3x3x3x3=81 có chữ số tận cùng là 1

(3x3x3x3)x(3x3x3x3)x...x(3x3x3x3) (có 504 thừa số) và tích của chúng có chữ số tận cùng là 1

Ta có 3x3x3=27 có chữ số tận cùng là 7

=> (3x3x3x3)x(3x3x3x3)x...x(3x3x3x3)x(3x3x3) có chữ số tận cùng là 7

6 tháng 8 2018

bài này không khó nghe em chẳng qua là nó hơi dài

em phải nhớ công thức tính tổng của dãy số, công thức tổng quát ấy là n.(a1+an)/2 (n là số số hạng, a1 là phần tử thứ nhất và an là phần tử thứ n)

số số hạng thì dễ rồi đúng k

còn a1+an là bằng f(1/2019)+f(2018/2019)

em thế f(1/2019) vào f(x) cái kia cũng vậy

xong em chịu khó nhân vào có dạng là a^n.a^m

vậy là ra thôi em

19 tháng 3 2020

\(a-b+2019;b-c+2019;c-a+2019\text{ là 3 số nguyên liên tiếp}\)

\(\Rightarrow a-b;b-c;c-a\text{ là 3 số nguyên liên tiếp mà:}\left(a-b\right)+\left(b-c\right)+\left(c-a\right)=0\)

\(\text{nên:}a-b=-1;b-c=0;c-a=1\Rightarrow b=c=a+1\)

NV
26 tháng 11 2019

\(x^{2019}+1+1+...+1\) (672 số 1) \(\ge673\sqrt[673]{x^{2019}}=673x^3\)

Tương tự: \(y^{2019}+672\ge673y^3\) ; \(z^{2019}+672\ge673z^3\)

Cộng vế với vế:

\(x^{2019}+y^{2019}+z^{2019}+2016\ge673\left(x^3+y^3+z^3\right)\)

\(\Rightarrow x^3+y^3+z^3\le\frac{2016+3}{673}=3\)

Dấu "=" xảy ra khi \(x=y=z=1\)

18 tháng 1 2022

heo dõi mk dc k

18 tháng 1 2022

giúp mình đi rồi theo dõi=)

Ta thấy : \(a+b+c=1\Rightarrow a,b,c< 1\)

Lại có : \(a+b+c=a^3+b^3+c^3\)

\(\Rightarrow a+b+c-a^3-b^3-c^3=0\)

\(\Rightarrow a.\left(1-a^2\right)+b.\left(1-b^2\right)+c.\left(1-c^2\right)=0\) (*)

Do : \(a,b,c< 1\Rightarrow\left\{{}\begin{matrix}1-a^2>0\\1-b^2>0\\1-c^2>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a.\left(1-a^2\right)\ge0\\b.\left(1-b^2\right)\ge0\\c.\left(1-c^2\right)\ge0\end{matrix}\right.\) mà (*) nên ta có :\(\left\{{}\begin{matrix}a.\left(1-a^2\right)=0\\b.\left(1-b^2\right)=0\\c.\left(1-c^2\right)=0\end{matrix}\right.\)

Theo bài có \(a+b+c=a^3+b^3+c^3\)

nên : \(\left(a,b,c\right)\in\left\{\left(1,0,0\right),\left(0,1,0\right),\left(0,0,1\right)\right\}\)

Trong cả ba trường hợp trên thì \(M=1\)

Vậy : \(M=1\) với \(a,b,c\) thỏa mãn đề.

22 tháng 9 2019

hay