Tìm hệ số góc của đường thẳng đi qua AC (0;3) và B (2;0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay \(x=1;y=-1\) vào phương trình đường thẳng \(\left(d\right)\) , ta có:
\(a\cdot1+-1\left(2a-1\right)+3=0\)
\(\Leftrightarrow a-2a+1+3=0\)
\(\Leftrightarrow a-2a+4=0\)
\(\Leftrightarrow\left(a-1\right)^2+2=0\) (vô lí do \(\left(a-1\right)^2+2\ge2>0\forall a\)
Do đó phương trình ban đầu vô nghiệm
Vậy đường thẳng \(\left(d\right)\) không đi qua điểm M
Đáp án C
Đường thẳng (d) đi qua A(0; 1) nên ta có: 1 = a.0 + b ⇒ b = 1
Mà đường thẳng (d) song song với đường thẳng (d') và hệ số góc của (d') là 2.
Khi đó ta có: a = 2
Vậy giá trị cần tìm là a = 2, b = 1
Đường thẳng đi qua gốc tọa độ có dạng y = ax + b
Vì đường thẳng y = ax đi qua điểm A(2; 1) nên tọa độ điểm A nghiệm đúng phương trình đường thẳng.
Ta có: 1 = a.2 ⇔ a = 1/2
Vậy hệ số góc của đường thẳng đi qua gốc tọa độ và đi qua điểm A(2; 1) là a = 1/2
a. Giả sử phương trình đường thẳng đi qua gốc tọa độ và đi qua A(3;1) là y=ax \(\Rightarrow1=3a\Rightarrow a=\dfrac{1}{3}\) ⇒ \(y=\dfrac{1}{3}x\) ⇒ hệ số góc của đường thẳng đó là \(\dfrac{1}{3}\)
b. Giả sử phương trình đường thẳng đi qua gốc tọa độ và đi qua B(1;-3) là y=a'x \(\Rightarrow-3=a\Rightarrow a=-3\) ⇒y=-3x ⇒ hệ số góc của đường thẳng đó là -3
a) ta có a=\(\dfrac{yA-yB}{xA-xB}\) ⇒ hệ số góc đường thẳng qua gốc toạ độ và A(3,1) là a=\(\dfrac{1-0}{3-0}\)=\(\dfrac{1}{3}\)
b)tương tự a=\(\dfrac{-3-0}{1-0}=-3\)