giải pt : \((a^2+4)\times(b^2+4)\times(c^2+4)\times(d^2+4)\ge256abcd\) abcd
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{15}{4}-\dfrac{9}{4}=\dfrac{6}{4}=\dfrac{3}{2}\)
b: \(B=\dfrac{-3}{2}\cdot\dfrac{7-5\cdot4}{3}=\dfrac{-13}{-2}=\dfrac{13}{2}\)
c: \(C=\dfrac{-21}{10}\left(1-\dfrac{3}{4}\right)-\dfrac{3}{4}\)
\(=\dfrac{-21}{10}\cdot\dfrac{1}{4}-\dfrac{3}{4}\)
\(=\dfrac{-21}{40}-\dfrac{30}{40}=\dfrac{-51}{40}000000997\)
d: \(D=\dfrac{-2}{3}+\dfrac{-12}{5}-3=\dfrac{-10-36-45}{15}=\dfrac{-91}{15}\)
A . \(3\cdot\dfrac{5}{4}-\dfrac{3^2}{4}=\dfrac{15}{4}-\dfrac{9}{4}=\dfrac{6}{4}=\dfrac{3}{2}\)
B, \(\dfrac{-3}{2}\cdot\left(\dfrac{7}{3}-\dfrac{5}{3}\cdot4\right)=\dfrac{-3}{2}\cdot\left(\dfrac{7}{3}-\dfrac{20}{3}\right)=\dfrac{-3}{2}\cdot\dfrac{-13}{2}=\dfrac{39}{4}\)
C , \(\dfrac{-21}{10}+\dfrac{21}{10}\cdot\dfrac{3}{4}-\dfrac{3}{4}=\dfrac{-84}{40}+\dfrac{63}{40}-\dfrac{30}{40}=\dfrac{-84+63-30}{40}=\dfrac{-51}{40}\)
D , \(\dfrac{-2}{3}+2\cdot\left(\dfrac{-2}{3}\right)\cdot3-3=\dfrac{-2}{3}\left(1+2\cdot3\right)-3=\dfrac{-2}{3}\cdot7-3=\dfrac{-14}{3}-\dfrac{9}{3}=-\dfrac{23}{3}\)
Bài 1:
a) Ta có: \(A=\left(x+3\right)^2+\left(x-3\right)\left(x+3\right)-2\left(x+2\right)\left(x-4\right)\)
\(=x^2+6x+9+x^2-9-2\left(x^2-4x+2x-8\right)\)
\(=2x^2+6x-2\left(x^2-2x-8\right)\)
\(=2x^2+6x-2x^2+4x+16\)
\(=10x+16\)
Thay \(x=\frac{1}{2}\) vào biểu thức \(A=10x+16\), ta được:
\(A=10\cdot\frac{1}{2}+16=5+16=21\)
Vậy: 21 là giá trị của biểu thức \(A=\left(x+3\right)^2+\left(x-3\right)\left(x+3\right)-2\left(x+2\right)\left(x-4\right)\) tại \(x=\frac{1}{2}\)
b) Ta có: \(B=\left(3x+4\right)^2-\left(x+4\right)\left(x+4\right)-10x\)
\(=9x^2+24x+16-\left(x^2+8x+16\right)-10x\)
\(=9x^2+24x+16-x^2-8x-16-10x\)
\(=8x^2+6x\)
Thay \(x=\frac{1}{10}\) vào biểu thức \(B=8x^2+6x\), ta được:
\(B=8\cdot\left(\frac{1}{10}\right)^2+6\cdot\frac{1}{10}=8\cdot\frac{1}{100}+\frac{6}{10}\)
\(=\frac{8}{100}+\frac{6}{10}\)
\(=\frac{8}{100}+\frac{60}{100}=\frac{17}{25}\)
Vậy: \(\frac{17}{25}\) là giá trị của biểu thức \(B=\left(3x+4\right)^2-\left(x+4\right)\left(x+4\right)-10x\) tại \(x=\frac{1}{10}\)
c) Ta có: \(C=\left(x+1\right)^2-\left(2x-1\right)^2+3\left(x-2\right)\left(x+2\right)\)
\(=x^2+2x+1-\left(4x^2-4x+1\right)+3\left(x^2-4\right)\)
\(=x^2+2x+1-4x^2+4x-1+3x^2-12\)
\(=6x-12\)
Thay x=1 vào biểu thức C=6x-12, ta được:
\(C=6\cdot1-12=6-12=-6\)
Vậy: -6 là giá trị của biểu thức \(C=\left(x+1\right)^2-\left(2x-1\right)^2+3\left(x-2\right)\left(x+2\right)\) tại x=1
d) Ta có: \(D=\left(x-3\right)\left(x+3\right)+\left(x-2\right)^2-2x\left(x-4\right)\)
\(=x^2-9+x^2-4x+4-2x^2+8x\)
\(=4x-5\)
Thay x=-1 vào biểu thức D=4x-5,ta được:
\(D=4\cdot\left(-1\right)-5=-4-5=-9\)
Vậy: -9 là giá trị của biểu thức \(D=\left(x-3\right)\left(x+3\right)+\left(x-2\right)^2-2x\left(x-4\right)\) tại x=-1
a: \(A=\dfrac{2}{3}-4\cdot\dfrac{5}{4}=\dfrac{2}{3}-5=-\dfrac{13}{3}\)
b: \(B=\dfrac{-2+5}{6}\cdot11-7=\dfrac{11}{2}-7=-\dfrac{3}{2}\)
c: \(=1+\dfrac{2}{3}\cdot\dfrac{1}{2}+\dfrac{27}{4}+5-1\)
\(=\dfrac{1}{3}+\dfrac{27}{4}+5=\dfrac{145}{12}\)
d: \(D=\dfrac{2}{3}\cdot\dfrac{2}{5}-\dfrac{1}{5}\cdot\dfrac{1}{6}=\dfrac{4}{15}-\dfrac{1}{30}=\dfrac{7}{30}\)
a. \(A=\dfrac{1}{2}\cdot\dfrac{2}{3}+\dfrac{5}{10}\) \(B=\dfrac{7}{8}-\dfrac{1}{4}\cdot\dfrac{3}{2}\)
\(=\dfrac{1}{3}+\dfrac{1}{2}\) \(=\dfrac{7}{8}-\dfrac{3}{8}\\ =\dfrac{1}{2}\)
\(\Rightarrow A>B\)
b. \(C=\dfrac{2}{3}\cdot\dfrac{4}{5}+\dfrac{8}{15}-\dfrac{1}{15}\)
\(=\dfrac{8}{15}+\dfrac{7}{15}\\ =\dfrac{15}{15}\\ =1\)
\(D=\dfrac{1}{2}\cdot\dfrac{5}{6}+\dfrac{2}{3}\cdot\dfrac{3}{4}\)
\(=\dfrac{5}{12}+\dfrac{6}{12}\\ =\dfrac{11}{12}\)
\(\Rightarrow C>D\)
a) 153^2+99.153+47^2
= 153^2+2.47.153+47^2
= (153+47)^2
=200^2
=40000
b) 126^2-152.126+5776
= 126^2-2.76.126+76^2
= (126-76)^2
= 50^2
= 2500
c)3^8.5^8-(15^4-1).(15^4+1)
= 15^8-[(15^4)^2-1^2]
= 15^8-15^8+1
=1
d) (2+1).(2^2+1).(2^4+1)...(2^32+1)+1
= 1.(2+1).(2^2+1).(2^4+1)...(2^32+1)+1
= (2-1).(2+1).(2+1).(2^4+1)...(2^32+1)+1
= (2^2-1).(2^2+1).(2^4+1)...(2^32+1)+1
= (2^4-1).(2^4+1)...(2^32+1)+1
= (2^8-1)...(2^32+1)+1
= (2^32-1).(2^32+1)+1
= 2^64-1+1
= 2^64
a: \(A=-5\cdot\left(-8\right)=40\)
b: \(B=-1\cdot\left(81-16\right)=-65\)
c: \(C=125\cdot\left(-7-8\right)+4=-1871\)
d: \(D=-9+8-1=-2\)
\(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\)
\(\ge\sqrt{a^2\cdot4}\cdot\sqrt{b^2\cdot4}\cdot\sqrt{c^2\cdot4}\cdot\sqrt{d^2\cdot4}\)
\(=4\left|a\right|\cdot4\left|b\right|\cdot4\left|c\right|\cdot4\left|d\right|\)
\(\ge256abcd\)
Dấu "=" xảy ra tại \(a=b=c=2\)
Khoan đã,fix lại cả bài nốt:v
\(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\)
\(\ge2\sqrt{a^2\cdot4}\cdot2\sqrt{b^2\cdot4}\cdot2\sqrt{c^2\cdot4}\cdot2\sqrt{d^2\cdot4}\)
\(=256\left|abcd\right|\ge256abcd\)
Dấu "=" xảy ra \(a=b=c=d=2\)