tìm giá trị lớn nhất của biểu thức sau
A) A=\(4x-x^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=-x^2+2x=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1\le1\)
\(maxA=1\Leftrightarrow x=1\)
b) \(B=\left(2-3x\right)\left(3+2x\right)=-6x^2-5x+6=-6\left(x^2+\dfrac{5}{6}x+\dfrac{25}{144}\right)+\dfrac{169}{24}=-6\left(x+\dfrac{5}{12}\right)^2+\dfrac{169}{24}\le\dfrac{169}{24}\)
\(minB=\dfrac{169}{24}\Leftrightarrow x=-\dfrac{5}{12}\)
c) \(C=4xy-4x-2y-4x^2-2y^2-3=-\left[4x^2-4x\left(y-1\right)+\left(y-1\right)^2\right]+\left(y^2-4y+4\right)-6=\left(2x-y+1\right)^2+\left(y-2\right)^2-6\le-6\)
\(minC=-6\Leftrightarrow\)\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=2\end{matrix}\right.\)
\(A=-x^2+2xy-4y^2+2x+10y-3\)
\(=-x^2+2xy-y^2+2x-2y-1-3y^2+12y-12+10\)
\(=-\left(x^2-2xy+y^2-2x+2y+1\right)-3\left(y^2-4y+4\right)+10\)
\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+10< =10\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=y+1=3\end{matrix}\right.\)
\(B=-4x^2-5y^2+8xy+10y+12\)
\(=-4x^2+8xy-4y^2-y^2+10y-25+37\)
\(=-4\left(x^2-2xy+y^2\right)-\left(y^2-10y+25\right)+37\)
\(=-4\left(x-y\right)^2-\left(y-5\right)^2+37< =37\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y=0\\y-5=0\end{matrix}\right.\)
=>x=y=5
bạn đăg tách ra cho m.n cùng giúp nhé
Bài 2 :
a, \(A=\left|2x-4\right|+2\ge2\)
Dấu ''='' xảy ra khi x = 2
Vậy GTNN A là 2 khi x = 2
b, \(B=\left|x+2\right|-3\ge-3\)
Dấu ''='' xảy ra khi x = -2
Vậy GTNN B là -3 khi x = -2
a: A=(x-1)(x-3)(x2-4x+5)
\(=\left(x^2-4x+3\right)\left(x^2-4x+5\right)\)
\(=\left(x^2-4x\right)^2+8\left(x^2-4x\right)+15\)
\(=\left(x^2-4x+4\right)^2-1\)
\(=\left(x-2\right)^4-1>=-1\)
Dấu = xảy ra khi x-2=0
=>x=2
b: \(B=x^2-2xy+2y^2-2y+1\)
\(=x^2-2xy+y^2+y^2-2y+1\)
\(=\left(x-y\right)^2+\left(y-1\right)^2>=0\)
Dấu = xảy ra khi x-y=0 và y-1=0
=>x=y=1
c: \(C=5+\left(1-x\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=-\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)+5\)
\(=-\left(x^2+5x-6\right)\left(x^2+5x+6\right)+5\)
\(=-\left[\left(x^2+5x\right)^2-36\right]+5\)
\(=-\left(x^2+5x\right)^2+36+5\)
\(=-\left(x^2+5x\right)^2+41< =41\)
Dấu = xảy ra khi \(x^2+5x=0\)
=>x(x+5)=0
=>\(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
\(I=-\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)+2021\)
\(=-\left(x^2+5x-6\right)\left(x^2+5x+6\right)+2021\)
\(=-\left[\left(x^2+5x\right)^2-6^2\right]+2021\)
\(=-\left(x^2+5x\right)^2+2057\le2057\)
\(I_{max}=2057\) khi \(x^2+5x=0\)
\(K=-\left(x-2\right)\left(x-7\right)\left(x-5\right)\left(x-4\right)+102\)
\(=-\left(x^2-9x+14\right)\left(x^2-9x+20\right)+102\)
\(=-\left(x^2-9x+14\right)\left(x^2+9x+14+6\right)+102\)
\(=-\left[\left(x^2-9x+14\right)^2+6\left(x^2-9x+14\right)\right]+102\)
\(=-\left[\left(x^2-9x+14\right)+6\left(x^2-9x+14\right)+9-9\right]+102\)
\(=-\left(x^2-9x+17\right)^2+111\le111\)
\(K_{max}=111\) khi \(x^2-9x+17=0\)
\(M=-\left(4x^2+4x+1\right)\left(16x^2+16x+3\right)-11\)
Đặt \(4x^2+4x+1=t\Rightarrow16x^2+16x=4t-4\)
\(\Rightarrow M=-t\left(4t-4+3\right)-11\)
\(M=-4t^2+t-11\)
\(M=-4\left(t-\dfrac{1}{8}\right)^2-\dfrac{175}{16}\le-\dfrac{175}{16}\)
\(M_{max}=-\dfrac{175}{16}\) khi \(t=\dfrac{1}{8}\)
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
a) Ta có: \(25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{2}{5}\)
b) Ta có: \(9x^2-6x+2\)
\(=9x^2-6x+1+1\)
\(=\left(3x-1\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)
c) Ta có: \(-x^2+2x-2\)
\(=-\left(x^2-2x+2\right)\)
\(=-\left(x^2-2x+1+1\right)\)
\(=-\left(x-1\right)^2-1\le-1\forall x\)
Dấu '=' xảy ra khi x-1=0
hay x=1
d) Ta có: \(x^2+12x+39\)
\(=x^2+12x+36+3\)
\(=\left(x+6\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi x=-6
e) Ta có: \(-x^2-12x\)
\(=-\left(x^2+12x+36-36\right)\)
\(=-\left(x+6\right)^2+36\le36\forall x\)
Dấu '=' xảy ra khi x=-6
f) Ta có: \(4x-x^2+1\)
\(=-\left(x^2-4x-1\right)\)
\(=-\left(x^2-4x+4-5\right)\)
\(=-\left(x-2\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi x=2
a) Ta có: \(25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{2}{5}\)
b) Ta có: \(9x^2-6x+2\)
\(=9x^2-6x+1+1\)
\(=\left(3x-1\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)
c) Ta có: \(-x^2+2x-2\)
\(=-\left(x^2-2x+2\right)\)
\(=-\left(x^2-2x+1+1\right)\)
\(=-\left(x-1\right)^2-1\le-1\forall x\)
Dấu '=' xảy ra khi x=1
( Mình trình bày mẫu câu a các câu khác mình làm tắt lại nhưng tương tự trình bày câu a nha )
a, Ta có : \(25x^2-20x+7=\left(5x\right)^2-2.5x.2+2^2+3\)
\(=\left(5x-2\right)^2+3\)
Thấy : \(\left(5x-2\right)^2\ge0\forall x\in R\)
\(\Rightarrow\left(5x-2\right)^2+3\ge3\forall x\in R\)
Vậy \(Min=3\Leftrightarrow5x-2=0\Leftrightarrow x=\dfrac{2}{5}\)
b, \(=9x^2-2.3x+1+1=\left(3x-1\right)^2+1\ge1\)
Vậy Min = 1 <=> x = 1/3
c, \(=-x^2+2x-1-1=-\left(x^2-2x+1\right)-1=-\left(x-1\right)^2-1\le-1\)
Vậy Max = -1 <=> x = 1
d, \(=x^2+2.x.6+36+3=\left(x+6\right)^2+3\ge3\)
Vậy Min = 3 <=> x = - 6
e, \(=-x^2-2.x.6-36+36=-\left(x+6\right)^2+36\le36\)
Vậy Max = 36 <=> x = -6 .
f, \(=-x^2+4x-4+5=-\left(x^2-4x+4\right)+5=-\left(x-2\right)^2+5\le5\)
Vậy Max = 5 <=> x = 2
giúp mik với mình đag cần cấp!
\(4x-x^2\)
\(=-x^2+4x\)\(=\left(x^2-4x\right)\)
\(=\left(x^2-2x.2+4-4\right)\)
\(=\left[\left(x-2\right)^2-4\right]\)
\(=\left(x-2\right)^2+4\)
\(Vì-\left(x-2^2\right)\le0nên-\left(x-2^2\right)\le4\)
\(\Rightarrow\)GTLN = 4 khi x = -2.
#Trang
#Fallen_Angel