Tìm giá trị lớn nhất của biểu thức sau
\(A=\frac{1}{2x^2+2x-5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(x-2\right)^2\ge0\forall x\)
nên Dấu '=' xảy ra khi x-2=0
hay x=2
Vậy: Gtnn của biểu thức \(\left(x-2\right)^2\) là 0 khi x=2
c: \(-x^2+2x-2=-\left(x-1\right)^2-1\le-1\forall x\)
\(\Leftrightarrow V\ge-1\forall x\)
Dấu '=' xảy ra khi x=1
Ta có:
A = \(\frac{1}{2x^2+2x-5}\)
A = \(\frac{1}{2\left(x^2+x+\frac{1}{4}\right)-\frac{11}{2}}\)
A = \(\frac{1}{2\left(x+\frac{1}{2}\right)^2-\frac{11}{2}}\)
Do \(2\left(x+\frac{1}{2}\right)^2\ge0\forall x\)=> \(2\left(x+\frac{1}{2}\right)^2-\frac{11}{2}\ge-\frac{11}{2}\forall x\)
=> \(\frac{1}{2\left(x+\frac{1}{2}\right)^2-\frac{11}{2}}\le\frac{1}{-\frac{11}{2}}=-\frac{2}{11}\forall x\)
Dấu "=" xảy ra <=> \(x+\frac{1}{2}=0\) <=> \(x=-\frac{1}{2}\)
Vậy MaxA = -2/11 <=> x = -1/2