Tìm phương trình nghiệm nguyên :
\(5x^2+y^2=17-2xy\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(2xy-x+y=3\)\(\Leftrightarrow4xy-2x+2y=6\Leftrightarrow2x\left(2y-1\right)+\left(2y-1\right)=5\)
\(\Leftrightarrow\left(2y-1\right)\left(2x+1\right)=5\)
Ta lập bảng giá trị:
\(2y-1\) | 1 | 5 | -1 | -5 |
\(2x+1\) | 5 | 1 | -5 | -1 |
\(x\) | 2 | 0 | -3 | -1 |
\(y\) | 1 | 3 | 0 | -2 |
Vậy phương trình đã cho có cách nghiệm nguyên (2;1);(0;3);(-3;0) và (-1;-2)
2xy-x+y=3
2(2xy-x+y)=2.3
4xy-2x+2y=6
2x(2y-1)-2y=6
2x(2y-1)-2y+1=6+1
2x(2y-1)-(2y-1)=7
(2x-1)(2y-1)=7
\(5x^2+2xy+y^2-4x=40\)
\(\Leftrightarrow\left(4x^2-4x+1\right)+\left(x^2+2xy+y^2\right)=41\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(x+y\right)^2=41\)
Vì x;y nguyên => 41 là tổng của 2 số CP
Ta có : \(41=16+25=4^2+5^2\)
Do \(\left(2x-1\right)^2\) là số CP lẻ \(\Rightarrow\left(2x-1\right)^2=5^2\Rightarrow\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}}\)
\(\Rightarrow\left(x+y\right)^2=4^2\Rightarrow\orbr{\begin{cases}x+y=4\\x+y=-4\end{cases}}\)
Với \(x=3\Rightarrow3+y=4\Rightarrow y=1\)(TM)
Với \(x=-2\Rightarrow-2+y=-4\Rightarrow x=-2\)(TM)
Vậy \(\left(x;y\right)\in\left\{\left(3;1\right);\left(-2;-2\right)\right\}\)
NHÂN VỚI 4 TA CÓ
\(\Leftrightarrow12x^2-8xy+4y-20x+8=0\)0
\(\Leftrightarrow\left(12x^2-20x+6\right)-4y\left(2x-1\right)-\left(2x-1\right)+1=0\)
\(\Leftrightarrow2\left(2x-1\right)\left(3x-3\right)-4y\left(2x-1\right)-\left(2x-x\right)+1=0\)
\(\Leftrightarrow\left(2x-1\right)\left(6x-4y-7\right)=-1\)
ĐẾN ĐAY BẠN TỰ GIẢI
\(5x^2+y^2=17+2xy\)
\(\Leftrightarrow4x^2+\left(x-y\right)^2=17\)
Từ đây ta nhận xét rằng 17 tách thành tổng 2 số chính phương trong đó có 1 số chia hết cho 4. Từ đó ta có
[4x2, (x - y)2] = (16, 1)
Tới đây thì đơn giản rồi bạn tự làm tiếp nhé
\(\Leftrightarrow\left(2x\right)^2+\left(x-y\right)^2=17\)
\(\Rightarrow\left(2x\right)^2\le17
\)
\(\Leftrightarrow4x^2\le16\)
\(\Leftrightarrow x^2\le4\)
\(x\in\left\{-2;-1;0;1;2\right\}\)
kẻ bảng thay từng giá trị vào