K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2021

a) \(4\left(n-1\right)-3⋮\left(n-1\right)\)

\(\Rightarrow\left(n-1\right)\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

Do \(n\in N\Rightarrow n\in\left\{0;2;4\right\}\)

b) \(-5\left(4-n\right)+12⋮\left(4-n\right)\)

\(\Rightarrow\left(4-n\right)\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)

Do \(n\in N\Rightarrow n\in\left\{16;10;8;7;6;5;3;2;1;0\right\}\)

c) \(-2\left(n-2\right)+6⋮\left(n-2\right)\)

\(\Rightarrow\left(n-2\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

Do \(n\in N\Rightarrow n\in\left\{0;1;3;4;5;8\right\}\)

d) \(n\left(n+3\right)+6⋮\left(n+3\right)\)

\(\Rightarrow\left(n+3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

Do \(n\in N\Rightarrow n\in\left\{0;3\right\}\)

1 tháng 11 2024

Bạn này làm sai r

a) Vì 5n + 7 chia hết cho n

\(\Rightarrow7⋮n\Rightarrow n\inƯ\left(7\right)\Rightarrow n\in\left\{\pm1;\pm7\right\}\)

Vậy \(n\in\left\{\pm1;\pm7\right\}\)

b) Vì n + 9 chia hết cho n +4

\(\Rightarrow\left(n+4\right)+5⋮n+4\)

\(\Rightarrow5⋮n+4\)

\(\Rightarrow n+4\inƯ\left(5\right)\)

\(\Rightarrow n+4\in\left\{\pm1;\pm5\right\}\)

\(\Rightarrow n\in\left\{-3;-5;-1;-9\right\}\) \(\inℕ\)

Vậy \(n\in\left\{-3;-5;-1;-9\right\}\)

21 tháng 10 2018

1. a) \(\left(n+15\right)⋮\left(n+2\right)\)

\(\Rightarrow\left[n+15-\left(n+2\right)\right]⋮\left(n+2\right)\)

\(\Rightarrow\left[n+15-n-2\right]⋮\left(n+2\right)\)

\(\Rightarrow13⋮\left(n+2\right)\)

\(\Rightarrow\left(n+2\right)\inƯ_{\left(13\right)}=\left\{\pm1;\pm13\right\}\)

\(\Rightarrow n\in\left\{...\right\}\)

21 tháng 10 2018

b) \(\left(3n+17\right)⋮\left(n+1\right)\)

\(\Rightarrow\left(3n+17\right)⋮3\left(n+1\right)\)

\(\Rightarrow\left(3n+17\right)⋮\left(3n+3\right)\)

\(\Rightarrow\left[\left(3n+17\right)-\left(3n+3\right)\right]⋮\left(n+1\right)\)

\(\Rightarrow\left[3n+17-3n-3\right]⋮\left(n+1\right)\)

\(\Rightarrow14⋮\left(n+1\right)\)

\(\Rightarrow\left(n+1\right)\inƯ_{\left(14\right)}=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)

\(\Rightarrow n\in\left\{...\right\}\)