Cho a\b=b\c=c\a và a+b+c≠0. Tính giá trị của M=a^7×b^2×c^1921\b^1930
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:b=b:c=c:a=>a/b=b/c=c/a=a+b+c/b+c+a=1
suy ra: a/b=1 suy ra: a=b
b/c=1 =>b=c
suy ra: a=b=c
suy ra: a^2.b^2.c^1930:b^1935=1.1.1:1=1
Ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow a=b=c\)
\(\Rightarrow M=\frac{a^3.b^2.c^{1930}}{b^{1935}}=\frac{b^{1935}}{b^{1935}}=1\)
Vì \(a+b+c\ne0\)\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow a=b=c\)\(\Rightarrow M=\frac{a^3.b^2.c^{1930}}{b^{1935}}=\frac{b^3.b^2.b^{1930}}{b^{1935}}=\frac{b^{3+2+1930}}{b^{1935}}=\frac{b^{1935}}{b^{1935}}=1\)
Vậy \(M=1\)
a) Có:
\(a+b+c=0\\\Leftrightarrow\left(a+b+c\right)^2=0\\ \Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\\ \Leftrightarrow2ab+2bc+2ca=-1\\ \Leftrightarrow ab+bc+ca=-\dfrac{1}{2}\\ \Leftrightarrow\left(ab+bc+ca\right)^2=\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\dfrac{1}{4}-0=\dfrac{1}{4} \)
Ta có: a+b+c=0
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow2\left(ab+bc+ac\right)=0-1=-1\)
hay \(ab+bc+ac=-\dfrac{1}{2}\)
\(\Leftrightarrow\left(ab+bc+ac\right)^2=\dfrac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2ab^2c+2abc^2+2a^2bc=\dfrac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(b+c+a\right)=\dfrac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2=\dfrac{1}{4}\)
Ta có: \(M=a^4+b^4+c^4\)
\(\Leftrightarrow M=a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2-2a^2b^2-2a^2c^2-2b^2c^2\)
\(\Leftrightarrow M=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+a^2c^2+b^2c^2\right)\)
\(\Leftrightarrow M=1^2-2\cdot\dfrac{1}{4}=1-\dfrac{1}{2}=\dfrac{1}{2}\)
Vậy: \(M=\dfrac{1}{2}\)
Ta có : \(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)=1\) ( * )
\(\Rightarrow ab+bc+ac=-\dfrac{1}{2}\)
Lại có : \(\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ca\right)^2\) ( suy ra từ * )
\(\Rightarrow a^4+b^4+c^4=2\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{2}\)
Vậy ...
Ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
Áp dụng tích chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)(vì a+b+c\(\ne\)0)
\(\Rightarrow\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)\(\Rightarrow a=b=c\)
Thay vào M ta được:
\(M=a^7.b^2.\frac{c^{1921}}{b^{1930}}\)
\(M=a^7.a^2.\frac{a^{1921}}{a^{1930}}\)
\(M=a^9.\frac{1}{a^9}\)
\(M=1\)
Vậy M=1