K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2019

đặt t = \(\sqrt{x^2+5x+10}\) t>0

\(t^2\)=\(x^2+5x+10\)

\(t^2-10\)=\(x^2+5x\)

thay vào pt ta đc

\(t^2\) -8+2t=0

\(\left\{{}\begin{matrix}t=2\left(tm\right)\\t=-4\left(l\right)\end{matrix}\right.\)

\(t^2\)=\(x^2+5x+10\)

\(x^2+5x+10\)=4

\(\left\{{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)

2:

a: =>2x^2-4x-2=x^2-x-2

=>x^2-3x=0

=>x=0(loại) hoặc x=3

b: =>(x+1)(x+4)<0

=>-4<x<-1

d: =>x^2-2x-7=-x^2+6x-4

=>2x^2-8x-3=0

=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)

 

23 tháng 2 2021

Mình khuyên bạn thế này : 

Bạn nên tách những câu hỏi ra 

Như vậy các bạn sẽ dễ giúp

Và cũng có nhiều bạn giúp hơn !

23 tháng 2 2021

Bài 1.

a) ( x - 3 )( x + 7 ) = 0

<=> x - 3 = 0 hoặc x + 7 = 0

<=> x = 3 hoặc x = -7

Vậy S = { 3 ; -7 }

b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0

<=> ( x - 2 )( x - 2 + x - 3 ) = 0

<=> ( x - 2 )( 2x - 5 ) = 0

<=> x - 2 = 0 hoặc 2x - 5 = 0

<=> x = 2 hoặc x = 5/2

Vậy S = { 2 ; 5/2 }

c) x2 - 5x + 6 = 0

<=> x2 - 2x - 3x + 6 = 0

<=> x( x - 2 ) - 3( x - 2 ) = 0

<=> ( x - 2 )( x - 3 ) = 0

<=> x - 2 = 0 hoặc x - 3 = 0

<=> x = 2 hoặc x = 3

6 tháng 7 2017

\(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)

\(\Leftrightarrow\left(\sqrt{3x^2-5x+1}-\sqrt{3}\right)-\left(\sqrt{x^2-2}-\sqrt{2}\right)=\left(\sqrt{3\left(x^2-x-1\right)}-\sqrt{3}\right)-\left(\sqrt{x^2-3x+4}-\sqrt{2}\right)\)

\(\Leftrightarrow\frac{3x^2-5x+1-3}{\sqrt{3x^2-5x+1}+\sqrt{3}}-\frac{x^2-2-2}{\sqrt{x^2-2}+\sqrt{2}}=\frac{3\left(x^2-x-1\right)-3}{\sqrt{3\left(x^2-x-1\right)}+\sqrt{3}}-\frac{x^2-3x+4-2}{\sqrt{x^2-3x+4}+\sqrt{2}}\)

\(\Leftrightarrow\frac{3x^2-5x-2}{\sqrt{3x^2-5x+1}+\sqrt{3}}-\frac{x^2-4}{\sqrt{x^2-2}+\sqrt{2}}-\frac{3x^2-3x-6}{\sqrt{3\left(x^2-x-1\right)}+\sqrt{3}}+\frac{x^2-3x+2}{\sqrt{x^2-3x+4}+\sqrt{2}}=0\)

\(\Leftrightarrow\frac{\left(x-2\right)\left(3x+1\right)}{\sqrt{3x^2-5x+1}+\sqrt{3}}-\frac{\left(x-2\right)\left(x+2\right)}{\sqrt{x^2-2}+\sqrt{2}}-\frac{3\left(x-2\right)\left(x+1\right)}{\sqrt{3\left(x^2-x-1\right)}+\sqrt{3}}+\frac{\left(x-1\right)\left(x-2\right)}{\sqrt{x^2-3x+4}+\sqrt{2}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{3x+1}{\sqrt{3x^2-5x+1}+\sqrt{3}}-\frac{x+2}{\sqrt{x^2-2}+\sqrt{2}}-\frac{3\left(x+1\right)}{\sqrt{3\left(x^2-x-1\right)}+\sqrt{3}}+\frac{x-1}{\sqrt{x^2-3x+4}+\sqrt{2}}\right)=0\)

Dễ thấy: \(\frac{3x+1}{\sqrt{3x^2-5x+1}+\sqrt{3}}-\frac{x+2}{\sqrt{x^2-2}+\sqrt{2}}-\frac{3\left(x+1\right)}{\sqrt{3\left(x^2-x-1\right)}+\sqrt{3}}+\frac{x-1}{\sqrt{x^2-3x+4}+\sqrt{2}}=0\) vô nghiệm

\(\Rightarrow x-2=0\Rightarrow x=2\)

15 tháng 7 2017

sao cái từ "dễ thấy" nó khó thấy quá v 

NV
27 tháng 12 2020

ĐKXĐ:

\(\left(2x+2-2\sqrt{5x-1}\right)+\left(\sqrt{5x^2+x+3}-\left(2x+1\right)\right)+x^2-3x+2=0\)

\(\Leftrightarrow\dfrac{2\left(x^2-3x+2\right)}{x+1+\sqrt{5x-1}}+\dfrac{x^2-3x+2}{\sqrt{5x^2+x+3}+2x+1}+x^2-3x+2=0\)

\(\Leftrightarrow\left(x^2-3x+2\right)\left(\dfrac{2}{x+1+\sqrt{5x-1}}+\dfrac{1}{\sqrt{5x^2+x+3}+2x+1}+1\right)=0\)

\(\Leftrightarrow x^2-3x+2=0\)

21 tháng 4 2018

bai dai qua

21 tháng 4 2018

a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9

                           (9+x)= -9-x khi 9+x <0 hoặc x <-9

1)pt   9+x=2 với x >_ -9

    <=> x  = 2-9

  <=>  x=-7 thỏa mãn điều kiện (TMDK)

2) pt   -9-x=2 với x<-9

         <=> -x=2+9

             <=>  -x=11

                       x= -11 TMDK

 vậy pt có tập nghiệm S={-7;-9}

các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd

nhu cau o trên mk lam 9+x>_0    hoặc x>_0

với số âm thi -2x>_0  hoặc x <_ 0  nha

30 tháng 12 2016

x=11.94685508 nha 

a: \(\Leftrightarrow\left(x-\sqrt{5}\right)^2=0\)

\(\Leftrightarrow x-\sqrt{5}=0\)

hay \(x=\sqrt{5}\)

b: \(\Leftrightarrow4x^4-9x^2+4x^2-9=0\)

\(\Leftrightarrow4x^2-9=0\)

=>x=3/2hoặc x=-3/2

NM
29 tháng 12 2020

đặt \(\hept{\begin{cases}\sqrt[3]{3x-2}=a\\\sqrt{6-5x}=b\ge0\end{cases}}\) ta sẽ có hệ sau \(\hept{\begin{cases}3a+4b=10\\5a^3+3b^2=8\end{cases}}\)

rút thế \(b=\frac{10-3a}{4}\)xuống phương trình dưới ta có\

\(5a^3+3\left(\frac{10-3a}{4}\right)^2=8\) hay 

\(80a^3+27a^2-180a+172=0\Leftrightarrow\left(a+2\right)\left(80a^2-133a+86\right)=0\Leftrightarrow a=-2\)

hay \(\sqrt[3]{3x-2}=-2\Leftrightarrow x=-2\) thay lại thỏa mãn

vậy phương trình có nghiệm duy nhất x=-2