K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có:

\(x^3+3x^2+3x+1\ge x^3+x^2+x+1>x^3\)

\(\Rightarrow\left(x+1\right)^3\ge x^3+x^2+x+1>x^3\Rightarrow\left(x+1\right)^3=x^3+x^2+x+1\)

<=>x=0=>2y=1=>y=0

Vậy nghiệm của pt:(x;y)=(0;0)

31 tháng 7 2016

\(x^2=y\left(y+1\right)\left(y+2\right)\left(y+3\right)\Leftrightarrow x^2=\left(y^2+3y\right)\left(y^2+3y+2\right)\)(*)
Đặt \(y^2+3y+\frac{3}{2}=a\)
khi đó : (*) \(x^2=\left(a-\frac{3}{2}\right)\left(a+\frac{3}{2}\right)=a^2-\frac{9}{4}\Leftrightarrow\left(4x-4a\right)\left(x+a\right)=-9\)
Lập bảng là ok nhé 
 

8 tháng 1 2019

Với [x>0x<−1] [x>0x<−1] ta có:
x3<x3+x2+x+1<(x+1)3⇒x3<y3<(x+1)3x3<x3+x2+x+1<(x+1)3⇒x3<y3<(x+1)3 (không thỏa mãn)
Suy ra −1≤x≤0−1≤x≤0. Mà x∈Z⇒x∈{−1;0}x∈Z⇒x∈{−1;0}
⋆⋆ Với x=−1x=−1 ta có: y=0
⋆⋆ Với x=0x=0 ta có: y=1

17 tháng 1 2019

x^3+x^2+x+1=y^3 => y^3 - x^3 = x^2 + x + 1 = (x + 1/2)^2 + 3/4 > 0 
=> y^3 > x^3 (1) 
mặt khác: 
5x^2 +11x+5 =5(x+11/10)^2 +19/20 > 0 
y^3 = x^3 + x^2 + x +1 < x^3 + x^2 + x +1 + 5x^2 + 11x +5 = x^3 +6x^2 +12x +8 = (x + 2)^3 (2) 
(1) và (2) => y^3 = (x + 1)^3 => y = x +1 
=> x^3+x^2 +x +1 = x^3 +3x^2 +3x +1 = y^3 
<=> 2x^2 + 2x =0 
<=> 2x(x+1)=0 
=> x = 0 và y=1 
hoặc x = -1 và y = 0