K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2019

A B C P A' B' C'

Có : \(\frac{BC}{PA'}+\frac{CA}{PB'}+\frac{AB}{PC'}=\frac{BC^2}{PA'.BC}+\frac{CA^2}{PB'.CA}+\frac{AB^2}{PC'.AB}\)

                                                 \(=\frac{BC^2}{2S_{BPC}}+\frac{CA^2}{2S_{CPA}}+\frac{AB^2}{2S_{ABP}}\)

Áp dụng bđt \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)được

\(\frac{BC}{PA'}+\frac{CA}{PB'}+\frac{AB}{PC'}\ge\frac{\left(AB+BC+CA\right)^2}{2S_{ABC}}=\frac{P_{ABC}^2}{2S_{ABC}}=const\:\)

Dấu "=" khi 3 cái phân số chứa mẫu là S kia bằng nhau <=> PA' = PB' = PC'

                                                                                         <=> P là tâm đường tròn nội tiếp tam giác ABC 

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

Phép dời hình và phép đồng dạng trong mặt phẳng

Bn xem thử có câu nào giống k? Bấm câu hỏi tương tự

Xin đừng ném đá

Mk có ý tốt

K tìm thấy thì mk xin lỗi đã làm phiền bn

Hội con 🐄 chúc bạn học tốt!!!

16 tháng 8 2019

Không có câu nào tương tự mình mới gửi lên đó

27 tháng 12 2021

Xét tam giác ABC, M là điểm trong tam giác, MD,ME,MF lần lượt là hình chiếu của M lên AB,AC,BC

Kẻ đường cao AH const

Đặt \(AB=AC=BC=a\)

\(S_{ABC}=S_{AMB}+S_{AMC}+S_{BMC}\)

\(=\frac{1}{2}\left(DM.AB+ME.AC+MF.BC\right)\)

\(=\frac{1}{2}a\left(DM+ME+MF\right)\)

\(=\frac{1}{2}a.AH\)

\(=DM+ME+MF=AH\left(đpcm\right)\)