K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì vế phải lớn nơn hoặc bằng 0 nên vế trái lớn hơn hoặc bằng 0 nên y^2 nhỏ hơn hoặc bằng 25 hay y nhỏ hơn hoặc bằng 5 nên y thuộc 1;2;3;4;5 rồi ngời thay giá trị y vào đề bài rồi tìm được y và x

Mình bận nên chỉ viết đc gợi ý thôi nha thông cảm

20 tháng 1 2019

\(25-y^2=8\left(x-2015\right)^2\)

\(\Leftrightarrow\left(5-y\right)\left(y+5\right)=8\left(x-2015\right)^2\)

Do vế phải luôn không âm nên: vế trái luôn không ấm.

Tức là: \(-5\le y\le5\).Ta có bảng sau:

y-5-4-3-2-1012345
8(x - 2015)2\(0\)91621242524211690
x0(vô nghiệm)(vô nghiệm)(vô nghiệm)(vô nghiệm)(vô nghiệm)(vô nghiệm)(vô nghiệm)(vô nghiệm)(vô nghiệm)0

Vậy: (x;y) = (0;-5) và (0;5)

20 tháng 1 2019

Ghi nhầm: sửa lại ở hai ô có x = 0 thành: x = 2015 giúp mình nha.

Vậy (x;y) = (2015;-5) và (2015;5)

16 tháng 8 2019

Ta có: |15/32 - x| ≥ 0; |4/25 - y| ≥ 0; |z - 14/31| ≥ 0

=> |15/32 - x| +|4/25 - y|+ |z - 14/31| ≥ 0

Mà |15/32 - x| +|4/25 - y|+ |z - 14/31| < 0

=> x, y, z ∈ \(\varnothing\) 

1 tháng 5 2019

Ta có: \(\hept{\begin{cases}x^{2019}\le x^{2020}\\y^{2019}\le y^{2020}\end{cases}}\)

\(\Rightarrow x^{2019}+y^{2019}\le x^{2020}+y^{2020}\)

( em ko biết đúng hay sai làm theo cách hiểu của em thôi ) 

15 tháng 10 2017

Bn ơi câu số 2 yêu cầu làm gì vậy

3 tháng 2 2017

|x+2|, |y+5| luôn>=0 với mọi x,y

=> \(\hept{\begin{cases}\left|x+2\right|=0\\\left|y+5\right|=0\end{cases}< =>\hept{\begin{cases}x+2=0\\y+5=0\end{cases}< =>\hept{\begin{cases}x=-2\\y=-5\end{cases}}}}\)

6 tháng 8 2016

2x + 124 = 5y ( 1 )

Ta có : 

2x + 124 là số chẵn nếu x lớn hơn 1 

2x + 124 là số lẻ nếu x = 0, mặt khác 5là 1 số lẻ => x = 0 

Từ ( 1 ) => 1 + 124 = 5y

                => 5= 125

            => y = 3

Kết luận x = 0 và y  3
 

6 tháng 8 2016

Kết luận

x = 3 và y = 0

23 tháng 3 2022

\(\left(x-4\right)^4=\left(x-4\right)^2\\ \Rightarrow\left(x-4\right)^2\left[\left(x-4\right)^2-1\right]=0\\ \Rightarrow\left(x-4\right)\left(x-4-1\right)\left(x-4+1\right)=0\\ \Rightarrow\left(x-4\right)\left(x-5\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=4\\x=5\end{matrix}\right.\)