x^99 + x^55 + x^11 + x + 7 chia x - 1 có dư là bao nhiêu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi đa thức thương là H(x) và phần dư là ax+b.
Theo bài ra ta có:
x⁹⁹+x⁵⁵+x¹¹+x+7=(x²-1)×H(x)+ax+b (1)
Thay x=1;x=-1 lần lượt vào (1). Ta được:
11=a+b
3=-a+b => a=4; b=7
Dư là 4x+7
K mk nha
(x^99+x^11)+(x^55+x)+7 =x^11(x^88+1)+x(x^54+1)+7 =x^11(x^22+1) (x^66-x^44+x^22-1) + x(x^54+1)+7 = A+7 mà ta có:
a^n+1=(a+1)(a^(n-1)-a^(n-2)+.....-1) (với n là lẻ) vậy a^n+1 chia hết cho a+1 với a lsf x^2,n lần lượt là 11 và 27=>A chia hết cho x^2+1 Xét 7(x^2+1) dư b nếu x=0 thì b=0 x=+ -1 thì b=1 x=+ -2 thì b=2 x>2 thì b=7 đó cũng là số dư của A+7 chia cho x^2+1. và là số dư cần tìm
a, f(x) = x99 + x55 + x11 + x + 7
f (-1)= -199 + -155 + -111 + -1 + 7
f( -1) = 3
Vậy dư = 3
Lời giải:
Đặt $f(x)=x^{99}+x^{55}+x^{11}+x+7$.
a) Theo định lý Bedu về phép chia đa thức, số dư của $f(x)$ khi chia cho $x+1$ là $f(-1)=(-1)^{99}+(-1)^{55}+(-1)^{11}+(-1)+7=3$
b)
$f(x)=x^{99}+x+x^{55}+x+x^{11}+x-2x-7$
$=x(x^{98}+1)+x(x^{54}+1)+x(x^{10}+1)-2x-7$
$=x[(x^2)^{49}+1]+x[(x^2)^{27}+1]+x[(x^2)^5+1]-2x-7$
Hiển nhiên: $x[(x^2)^{49}+1]+x[(x^2)^{27}+1]+x[(x^2)^5+1]\vdots x^2+1$
Do đó $f(x)$ chia $x^2+1$ dư $-2x-7$
= x(x^98+1)+x(x^54+1)+x(x^10+1)-2x+7
= x[(x^2)^49+1]+x[(x^2)^27+1]+x[(x^2)^5+1]-2x+7
Vì (x^2)^27+1 chi hết cho x^2+1
(x^2)^27+1 chi hết cho x^2+1
(x^2)^5+1 chia hết cho x^2+1
=> x[x^2)^49+1]+x[(x^2)^27+1]+x[(x^2)^5+1] chia hết cho x^2+1
Vậy dư trong phép chia là 7-2x
viet the sao hieu dc ban ???
^ là số mũ đấy