cho các số x y thỏa mãn hai chấm x - 2 mũ 4 + 2y - 1 mũ 2018 nhỏ hơn hoặc bằng 0 tính giá trị của biểu thức m = 11 x mũ 2 y + 4 x y mũ 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+y+3\right)^2=1-y^2\)
Ta thấy \(1-y^2\le1\) do \(y^2\ge0\forall y\)
Suy ra \( \left(x+y+3\right)^2\le1\Rightarrow\left|x+y+3\right|\le1\Rightarrow-1\le x+y+3\le1\)
\(\Rightarrow2012\le x+y+2016\le2014\)
\(Min_{\left(B\right)}=2012\Leftrightarrow x=-4;y=0\)
\(Max_{\left(B\right)}=2014\Leftrightarrow x=-2;y=0\)
Chúc bạn học tốt !!!
|2x - 1| + (y - 2)² ≤ 0 (1)
Do |2x - 1| ≥ 0 và (y - 2)²⁰²² ≥ 0 (với mọi x, y ∈ R)
(1) ⇒ |2x - 1| + (y - 2)²⁰²² = 0
⇒ |2x - 1| = 0 và (y - 2)²⁰²² = 0
*) |2x - 1| = 0
2x - 1 = 0
2x = 1
x = 1/2
*) (y - 2)²⁰²² = 0
y - 2 = 0
y = 2
⇒ B = 12x² + 4xy²
= 12.(1/2)² + 4.(1/2).2²
= 3 + 8
= 11
Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.
\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;-2\right)\)
`M=2(x^3 -y^3 )-3(x^2 +y^2)`
`M=2(x-y)(x^2 +xy+y^2 )-3x^2 -3y^2`
`M=2x^2 +2xy+2y^2 -3x^2 -3y^2`
`M=-x^2 +2xy-y^2`
`M=-(x^2 -2xy+y^2)`
`M=-(x-y)^2`
`M=-(1)^2`
`M=-1`
\(M=2\left(x^3-y^3\right)-3\left(x^2-y^2\right)\)
\(M=2\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x-y\right)\left(x+y\right)\)
\(M=2\left[x^2+x\left(x-1\right)+\left(x-1\right)^2\right]-3\left(2x-1\right)\)
\(M=2\left(x^2+x^2-x+x^2-2x+1\right)-6x+3\)
\(M=6x^2-12x+5\)
Đề bài yêu cầu tính giá trị nhưng mình cũng không rõ là giá trị gì nên mình làm đến đây thôi nhé.
Thay x=100 và y=2 vào biểu thức \(B=\left(x^5+y^6-2\right)\left(2y-4\right)\), ta được:
\(B=\left(100^2+2^6-2\right)\left(2\cdot2-4\right)=0\)
Vậy: Khi x=100 và y=2 thì B=0
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=\dfrac{x+y+z}{y+z+x}=\dfrac{x+y+z}{x+y+z}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)
Do đó \(\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)
Thay vào biểu thức \(P=\left(x-y\right)^{2022}+\left(y-z\right)^{2023}+\left(x-z-1\right)^{202}\),ta có:
\(P=0^{2022}+0^{2023}+\left(-1\right)^{202}\)
\(=0+0+1\)
\(=1\)