K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2019

ĐKXD \(x^2-6x+6\ge0\)

\(x^2-6x+9=4\sqrt{x^2-6x+6}\)

\(\Leftrightarrow\left(x^2-6x+6\right)-4\sqrt{x^2-6x+6}+3=0\)

Đặt \(a=\sqrt{x^2-6x+6}\left(a>0\right)\)

\(\Rightarrow a^2-4a+3=0\Leftrightarrow\left(a-3\right)\left(a-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=3\\a=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{cases}}\)

\(+\sqrt{x^2-6x+6}=3\)

\(\Rightarrow x^2-6x+6=9\)

\(\Rightarrow\orbr{\begin{cases}x=3+2\sqrt{3}\\x=3-2\sqrt{3}\end{cases}}\)

\(+\sqrt{x^2-6x+6}=1\)

\(\Rightarrow x^2-6x+6=1\)

\(\Rightarrow\orbr{\begin{cases}x=5\\x=1\end{cases}}\)

28 tháng 11 2021

Tớ đã trả lời ở câu hỏi mới nhất r nên xin phép được xóa câu hỏi này nhé

28 tháng 11 2021

b) Đặt \(\sqrt{x^2-6x+6}=a\left(a\ge0\right)\)

\(\Rightarrow a^2+3-4a=0\)

=> (a - 3).(a - 1) = 0

=> \(\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\)

Bình phương lên giải tiếp nhé!

c) Tương tư câu b nhé

 

b: Đặt \(x^2+5x+4=a\)

\(\Leftrightarrow a=5\sqrt{a+24}\)

\(\Leftrightarrow a^2=25a+600\)

\(\Leftrightarrow a^2-25a-600=0\)

\(\Leftrightarrow\left(a-40\right)\left(a+15\right)=0\)

\(\Leftrightarrow a=-15\)

hay S=∅

21 tháng 5 2023

a) `sqrt(x^2-6x _9) = 4-x`

`<=> sqrt[(x-3)^2] =4-x`

`<=> |x-3| =4-x ( đk :x<=4)`

`<=> |x-3| = |4-x|`

`<=> [(x-3 =4-x),(x-3 = x-4):}`

`<=>[(x = 7/2(t//m)),(0=-1(vl)):}`

Vậy `S = {7/2}`

b) `sqrt(x^2 -9) + sqrt(x^2 -6x +9) =0(đk : x>=3(hoặc) x<=-3)`

`<=>sqrt(x^2 -9) =- sqrt(x^2 -6x +9) `

`<=>(sqrt(x^2 -9))^2 =(- sqrt(x^2 -6x +9))^2`

`<=> x^2 -9 = x^2 -6x +9`

`<=> 6x = 9+9 =18`

`<=> x=3(t//m)`

Vậy `S={3}`

 

21 tháng 5 2023

c) `sqrt(x^2 -2x+1) + sqrt(x^2-4x+4) =3`

`<=> sqrt[(x-1)^2] +sqrt[(x-2)^2] =3`

`<=> |x-1| +|x-2| =3`

xét `x<1 =>{(|x-1| =1-x ),(|x-2|=2-x):}`

`=> 1-x +2-x =3`

`=> x = 0(t//m)`

xét `1<=x<2 => {(|x-1|=x-1),(|x-2|= 2-x):}`

`=> x-1 +2-x =3`

`=>1=3 (vl)`

xét `x>=2 => {(|x-1| =x-1),(|x-2|=x-2):}`

`=> x-1+x-2 =3`

`=> x=3(t//m)`

Vậy `S = {0;3}`

26 tháng 10 2021

6) ĐKXĐ: \(x\le-6\)

\(\sqrt{\left(x+6\right)^2}=-x-6\Leftrightarrow\left|x+6\right|=-x-6\)

\(\Leftrightarrow x+6=x+6\left(đúng\forall x\right)\)

Vậy \(x\le-6\)

7) ĐKXĐ: \(x\ge\dfrac{2}{3}\)

\(pt\Leftrightarrow\sqrt{\left(3x-2\right)^2}=3x-2\Leftrightarrow\left|3x-2\right|=3x-2\)

\(\Leftrightarrow3x-2=3x-2\left(đúng\forall x\right)\)

Vậy \(x\ge\dfrac{2}{3}\)

8) ĐKXĐ: \(x\ge5\)

\(pt\Leftrightarrow\sqrt{\left(4-3x\right)^2}=2x-10\)\(\Leftrightarrow\left|4-3x\right|=2x-10\)

\(\Leftrightarrow4-3x=10-2x\Leftrightarrow x=-6\left(ktm\right)\Leftrightarrow S=\varnothing\)

9) ĐKXĐ: \(x\ge\dfrac{3}{2}\)

\(pt\Leftrightarrow\sqrt{\left(x-3\right)^2}=2x-3\Leftrightarrow\left|x-3\right|=2x-3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x-3\left(x\ge3\right)\\x-3=3-2x\left(\dfrac{3}{2}\le x< 3\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)

 

 

27 tháng 11 2019

a/ ĐKXĐ:...

Đặt \(\sqrt{x^2-6x+6}=t\Rightarrow t^2=x^2-6x+6\Leftrightarrow t^2+3=x^2-6x+9\)

\(\Rightarrow t^2+3=4t\Leftrightarrow t^2-4t+3=0\Leftrightarrow\left[{}\begin{matrix}t=3\\t=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2-6x+6=9\\x^2-6x+6=1\end{matrix}\right.\)

Bạn tự giải nốt và đối chiếu ĐKXĐ

27 tháng 11 2019

Mouse's Highen's Bạn xem lại hộ mk đề bài câu b đi. Thấy đáng lẽ phải như thế này:

\(\sqrt{2x+3}+\sqrt{x+1}=3x+4\)

a) ĐK: \(x^2+7x+7\ge0\)

Đặt \(a=\sqrt{x^2+7x+7}\)  \(\left(a\ge0\right)\)

PT \(\Rightarrow3a^2-3+2a=2\) \(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-\dfrac{5}{3}\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow x^2+7x+7=1\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\)  (Thỏa mãn) 

Vậy ...

b) ĐK: \(x^2-6x+6\ge0\)

Đặt \(a=\sqrt{x^2-6x+6}\)  \(\left(a\ge0\right)\)

PT \(\Rightarrow a^2+3=4a\) \(\Leftrightarrow\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)  (Thỏa mãn)

+) Với \(a=3\) \(\Rightarrow x^2-6x+6=9\) \(\Leftrightarrow\left[{}\begin{matrix}x=3+2\sqrt{3}\\x=3-2\sqrt{3}\end{matrix}\right.\)  (Thỏa mãn)

+) Với \(a=1\) \(\Rightarrow x^2-6x+6=1\) \(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)  (Thỏa mãn)

  Vậy ...

 

 

  

16 tháng 6 2021

c)C1: Áp dụng bđt AM-GM \(\Rightarrow VT\ge2>\dfrac{7}{4}\)

=> Dấu = ko xảy ra hay pt vô nghiệm

C2: Đk:\(x>0\)

Đặt \(a=\sqrt{\dfrac{x^2+x+1}{x}}\left(a>0\right)\) \(\Rightarrow\dfrac{1}{a}=\sqrt{\dfrac{x}{x^2+x+1}}\)

Pttt: \(a+\dfrac{1}{a}=\dfrac{7}{4}\Leftrightarrow4a^2-7a+4=0\) 

\(\Delta =-15<0 \) => Pt vô nghiệm

Vậy...

d) Đk: \(x\le-8;x\ge0\)

Đặt \(t=\sqrt{x\left(8+x\right)}\left(t\ge0\right)\)

Pttt: \(t^2-3=2t\Leftrightarrow t^2-2t-3=0\Leftrightarrow\left[{}\begin{matrix}t=3\left(tm\right)\\t=-1\left(ktm\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x\left(8+x\right)}=3\Leftrightarrow x^2+8x-9=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-9\end{matrix}\right.\) (tm)

Vậy...