Cho các số dương a , b . C/m : \(\frac{a}{2a+b}+\frac{b}{2b+a}< 1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng bất đẳng thức cơ bản dạng\(\left(x+y\right)^2\ge4xy\), ta được: \(\left(a+2b\right)^2=\left(\frac{2a+b}{2}+\frac{3b}{2}\right)^2\ge4.\frac{2a+b}{2}.\frac{3b}{2}=3b\left(2a+b\right)\)
\(\Rightarrow\frac{2a+b}{a+2b}\le\frac{a+2b}{3b}\Rightarrow\frac{2a+b}{a\left(a+2b\right)}\le\frac{1}{3}\left(\frac{2}{a}+\frac{1}{b}\right)\)
Tương tự, ta có: \(\frac{2b+c}{b\left(b+2c\right)}\le\frac{1}{3}\left(\frac{2}{b}+\frac{1}{c}\right)\); \(\frac{2c+a}{c\left(c+2a\right)}\le\frac{1}{3}\left(\frac{2}{c}+\frac{1}{a}\right)\)
Cộng theo vế ba bất đẳng thức trên, ta được: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{2a+b}{a\left(a+2b\right)}+\frac{2b+c}{b\left(b+2c\right)}+\frac{2c+a}{c\left(c+2a\right)}\)
Đẳng thức xảy ra khi a = b = c
![](https://rs.olm.vn/images/avt/0.png?1311)
Ối,không ngờ đề gắt ~v
Theo Cô si,ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{3}{\sqrt[3]{xyz}}\ge\frac{3}{\frac{x+y+z}{3}}=\frac{9}{x+y+z}\)
Suy ra \(\frac{1}{x+y+z}\le\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Áp dụng vào,ta có: \(\frac{1}{a+2b+3c}=\frac{1}{\left(a+b\right)+\left(b+c\right)+\left(b+c\right)}\)
\(\le\frac{1}{9}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{b+c}\right)\)
Chứng minh tương tự và cộng theo vế:
\(VT\le\frac{1}{9}\left[\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)+2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\right]\)
\(=\frac{1}{9}\left[3\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\right]=\frac{1}{3}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
Lại có BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Rightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)
Áp dụng vào,ta có: \(VT\le\frac{1}{3}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
\(\le\frac{1}{12}\left[2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Nhân abc vào mỗi vế : \(VT.abc\le\frac{1}{6}\left(ab+bc+ca\right)=\frac{abc}{6}\)
Chia cả hai vế cho abc (vì a,b,c dương nên abc khác 0): \(VT\le\frac{1}{6}< \frac{3}{16}\)(đpcm)
Cũng không biết đúng hay sai nữa :v
![](https://rs.olm.vn/images/avt/0.png?1311)
Hai BĐT đều có dấu "=" xảy ra
a/ \(\Leftrightarrow x^7-x^4y^3+y^7-x^3y^4\ge0\)
\(\Leftrightarrow x^4\left(x^3-y^3\right)-y^4\left(x^3-y^3\right)\ge0\)
\(\Leftrightarrow\left(x^4-y^4\right)\left(x^3-y^3\right)\ge0\)
\(\Leftrightarrow\left(x+y\right)\left(x^2+y^2\right)\left(x^2+xy+y^2\right)\left(x-y\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(x=y\)
b/ Áp dụng câu a:
\(VT\le\sum\frac{a^2b^2}{a^3b^3\left(a+b\right)+a^2b^2}=\sum\frac{1}{ab\left(a+b\right)+1}=\sum\frac{abc}{ab\left(a+b\right)+abc}=\sum\frac{c}{a+b+c}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Để bài toán được thỏa mãn thì:
\(\left\{\begin{matrix} 2a+b\vdots a+2b+1\\ a+2b\vdots 2a+b-2\end{matrix}\right.\Rightarrow (2a+b)(a+2b)\vdots (a+2b+1)(2a+b-2)\)
\(\Leftrightarrow (2a+b)(a+2b)\vdots (a+2b)(2a+b)-3b-2\)
\(\Rightarrow 3b+2\vdots (a+2b+1)(2a+b-2)\)
Vì $3b+2>0$ nên từ đây suy ra $3b+2\geq (a+2b+1)(2a+b-2)$
Mà $a\geq 1$ nên $(a+2b+1)(2a+b-2)\geq (2+2b)b$
$\Rightarrow 3b+2\geq (2+2b)b
$\Leftrightarrow 2b^2-b-2\leq 0(*)$
Nếu $b\geq 2$ thì $2b^2-b-2\geq 4b-b-2=3b-2>0$ nên không thỏa mãn $(*)$
Do đó $b=1$
Thay vào điều kiện ban đầu: $2a+1\vdots a+3$
$\Leftrightarrow 2(a+3)-5\vdots a+3$
$\Leftrightarrow 5\vdots a+3$
$\Rightarrow a+3=5$ (do $a+3\geq 4$) $\Rightarrow a=2$
Thử lại thấy thỏa mãn
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(2a+b^2=2a\left(a+b+c\right)+b^2=b^2+2a^2+2ab+2ac\)
\(\ge4ab+2ac+a^2\)
\(\Rightarrow\frac{a}{2a+b^2}\le\frac{a}{4ab+2ac+a^2}=\frac{1}{4b+2c+a}\)
\(\le\frac{1}{49}.\frac{49}{4b+2c+a}=\frac{1}{49}.\frac{\left(4+2+1\right)^2}{4b+2c+a}\)
\(\le\frac{1}{49}\left(\frac{16}{4b}+\frac{4}{2c}+\frac{1}{a}\right)=\frac{1}{49}\left(\frac{4}{b}+\frac{2}{c}+\frac{1}{a}\right)\)
CMTT: \(\frac{b}{2b+c^2}\le\frac{1}{49}\left(\frac{4}{c}+\frac{2}{a}+\frac{1}{b}\right);\frac{c}{2c+a^2}\le\frac{1}{49}\left(\frac{4}{a}+\frac{2}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{a}{2a+b^2}+\frac{b}{2b+c^2}+\frac{c}{2c+a^2}\le\frac{1}{7}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)( đpcm )
![](https://rs.olm.vn/images/avt/0.png?1311)
\(S\le\frac{a}{2a+2b+2c}+\frac{b}{2a+2b+2c}+\frac{c}{2a+2b+2c}=\frac{1}{2}\)
\(S_{max}=\frac{1}{2}\) khi \(a=b=c=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Trước hết ta chứng minh các bđt : \(a^7+b^7\ge a^2b^2\left(a^3+b^3\right)\left(1\right)\)
Thật vậy:
\(\left(1\right)\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\ge0\)(luôn đúng)
Lại có : \(a^3+b^3+1\ge ab\left(a+b+1\right)\)
\(\Leftrightarrow a^3+b^3+abc\ge ab\left(a+b+1\right)\)
mà \(a^3+b^3\ge ab\left(a+b\right)\)
\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b+1\right)\)(luôn đúng)
Áp dụng các bđt trên vào bài toán ta có
∑\(\frac{a^2b^2}{a^7+a^2b^2+b^7}\le\)∑\(\frac{a^2b^2}{a^3b^3\left(a+b+c\right)}\le\)∑\(\frac{a+b+c}{a+b+c}=1\)
Bất đẳng thức được chứng minh
Dấu "=" xảy ra khi a=b=c=1
Em xem lại dòng thứ 4 và giải thích lại giúp cô với! ko đúng hoặc bị nhầm
Câu này đơn giản !
Do a ,b là các số dương
\(\Rightarrow\hept{\begin{cases}2a+b>a+b\\2b+a>a+b\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{2a+b}< \frac{a}{a+b}\\\frac{b}{2b+a}< \frac{b}{a+b}\end{cases}}\)
Cộng các vế tương ứng của các bất đẳng thức trên , ta có:
\(\frac{a}{2a+b}+\frac{b}{2b+a}< \frac{a}{a+b}+\frac{b}{a+b}=\frac{a+b}{a+b}=1\)
Vậy \(\frac{a}{2a+b}+\frac{b}{2b+a}< 1\)
Vì a,b dương nên:
\(\frac{a}{2a+b}+\frac{b}{2b+a}< \frac{a}{a+b}+\frac{b}{a+b}=1\)
Vậy \(\frac{a}{2a+b}+\frac{b}{2b+a}< 1\left(đpcm\right)\)