Cho a/a'=b/b'=c/c'=4
Tính S=3a+4b-5c/2a'-3b'+9c'
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: BĐT phụ sau: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)( CM bằng BĐT Shwars nha).Áp dụng ta có:
\(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5a}+\frac{1}{3a+2b+4c}\ge\frac{9}{9a+6b+12c}=\frac{3}{3a+2b+4c}\left(1\right)\)
\(\frac{1}{b+3c+5a}+\frac{1}{c+3a+5b}+\frac{1}{3b+2c+4a}\ge\frac{9}{9b+6c+12a}=\frac{3}{3b+2c+4a}\left(2\right)\)
\(\frac{1}{c+3a+5b}+\frac{1}{a+3b+5c}+\frac{1}{3c+2a+4b}\ge\frac{9}{9c+6a+12b}=\frac{3}{3c+2a+4b}\left(3\right)\)
Cộng (1),(2) và (3) có:
\(2\left(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5c}+\frac{1}{c+3a+5b}\right)+\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\ge3\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\)
\(\Rightarrow2VP\ge2VT\)
\(\RightarrowĐPCM\)
a) 3a + 4b - 5c - 2a - 3b + 5c
= ( 3a - 2a ) + ( 4b - 3b ) - ( 5c - 5c )
= a + b
b) 7a + 3b - 4c - 3a + 2b - 2c - 4a + b - 2c
= ( 7a - 3a - 4a ) + ( 3b + 2b + b ) - ( 4c + 2c + 2c )
= 6b - 8c
a) 3a + 4b - 5c - 2a - 3b + 5c
= (3a - 2a) + (4b - 3b) - (5c - 5c)
= a + b - 0 = a + b
b) 7a + 3b - 4c - 3a + 2b - 2c - 4a + b - 2c
= (7a - 3a - 4a) + (3b + 2b + b) - ( 4c + 2c + 2c)
= 0 + 6b - 8c = 6b - 8c
a, \(a\div b\div c\div d=15\div7\div3\div1\) và \(a-b+c-d\) = 20 ( bạn thiếu đề nên mình cho đại)
Có \(a\div b\div c\div d=15\div7\div3\div1\Rightarrow\frac{a}{15}=\frac{b}{7}=\frac{c}{3}=\frac{d}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{15}=\frac{b}{7}=\frac{c}{3}=\frac{d}{1}=\frac{a-b+c-d}{15-7+3-1}=\frac{20}{10}=2\)
Do đó
\(\frac{a}{15}=2\Rightarrow a=2.15=30\)
\(\frac{b}{7}=2\Rightarrow b=2.7=14\)
\(\frac{c}{3}=2\Rightarrow c=2.3=6\)
\(\frac{d}{1}=2\Rightarrow d=2.1=2\)
Vậy ......
b, 2a = 3b ; 5b = 7c và 3a + 5c - 7b = 30
Có 2a = 3b \(\Leftrightarrow\frac{a}{3}=\frac{b}{2}\Rightarrow\frac{1}{7}.\frac{a}{3}=\frac{1}{7}.\frac{b}{2}\Rightarrow\frac{a}{21}=\frac{b}{14}\left(1\right)\)
5b = 7c \(\Leftrightarrow\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{1}{2}.\frac{b}{7}=\frac{1}{2}.\frac{c}{5}\Rightarrow\frac{b}{14}=\frac{c}{10}\left(2\right)\)
Từ (1) và (2 ) \(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\Leftrightarrow\frac{3a}{63}=\frac{5c}{70}=\frac{7b}{70}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{3a}{63}=\frac{5c}{70}=\frac{7b}{70}=\frac{3a+5c-7b}{63+70-70}=\frac{30}{63}=\frac{10}{21}\)
Do đó :
\(\frac{3a}{63}=\frac{10}{21}\Leftrightarrow\frac{a}{21}=\frac{10}{21}\Rightarrow a=\frac{21.10}{21}=10\)
\(\frac{5c}{70}=\frac{10}{21}\Leftrightarrow\frac{c}{14}=\frac{10}{21}\Rightarrow c=\frac{14.10}{21}=\frac{140}{21}=\frac{20}{3}\)
\(\frac{7b}{70}=\frac{10}{21}\Leftrightarrow\frac{b}{10}=\frac{10}{21}\Rightarrow b=\frac{10.10}{21}=\frac{100}{21}\)
Vậy .......
c,3a=4b và b - a = 5
Có 3a = 4b \(\Rightarrow\frac{a}{4}=\frac{b}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{4}=\frac{b}{3}=\frac{b-a}{3-4}=\frac{5}{-1}=-5\)
Do đó :
\(\frac{a}{4}=-5\Rightarrow a=-5.4=-20\)
\(\frac{b}{3}=-5\Rightarrow b=-5.3=-15\)
Vậy ........................
\(a=\frac{5}{3}b\); \(c=\frac{5}{6}b\)
\(\Rightarrow3.\frac{5}{6}b-2.\frac{5}{3}b=10\)
\(\Leftrightarrow\frac{-5}{6}b=10\)
\(\Leftrightarrow b=-12\)
b, Tương tự
Bài làm:
a) \(3a=5b=6c\)
\(\Leftrightarrow\frac{a}{10}=\frac{b}{6}=\frac{c}{5}\)
Áp dụng t/c của dãy tỉ số bằng nhau:
\(\frac{a}{10}=\frac{b}{6}=\frac{c}{5}=\frac{3c-2a}{15-20}=\frac{10}{-5}=-2\)
\(\Rightarrow\hept{\begin{cases}a=-20\\b=-12\\c=-10\end{cases}}\)
b) Ta có: \(3a=4b\Leftrightarrow\frac{a}{4}=\frac{b}{3}\Leftrightarrow\frac{a}{20}=\frac{b}{15}\left(1\right)\)
và \(6b=5c\Leftrightarrow\frac{b}{5}=\frac{c}{6}\Leftrightarrow\frac{b}{15}=\frac{c}{18}\left(2\right)\)
Từ (1) và (2) => \(\frac{a}{20}=\frac{b}{15}=\frac{c}{18}\)
Áp dụng t/c của dãy tỉ số bằng nhau:
\(\frac{a}{20}=\frac{b}{15}=\frac{c}{18}=\frac{2c-3b+a}{36-45+20}=\frac{-22}{11}=-2\)
\(\Rightarrow\hept{\begin{cases}a=-40\\b=-30\\c=-36\end{cases}}\)
Ta có \(\hept{\begin{cases}3a=4b\\2b=5c\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{b}{3}=\frac{a}{4}\\\frac{b}{5}=\frac{c}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{b}{15}=\frac{a}{20}\\\frac{b}{15}=\frac{c}{6}\end{cases}}\Leftrightarrow\frac{a}{20}=\frac{b}{15}=\frac{c}{6}\)
Đặt \(\frac{a}{20}=\frac{b}{15}=\frac{c}{6}=k\Leftrightarrow\hept{\begin{cases}a=20k\\b=15k\\c=6k\end{cases}}\)
Khi đó a2 + b2 + c2 = 661
<=> (20k)2 + (15k)2 + (6k)2 = 661
<=> 661k2 = 661
<=> k2 = 1
<=> k = \(\pm1\)
Khi k = 1 => a = 20 ; b = 15 ; c = 6
Khi k = -1 => a = -20 ; b = - 15 ; c = -6
Ta có \(2a=3b=4c\Leftrightarrow\frac{2a}{12}=\frac{3b}{12}=\frac{4c}{12}\Leftrightarrow\frac{a}{6}=\frac{b}{4}=\frac{c}{3}\)
Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{a}{6}=\frac{b}{4}=\frac{c}{3}=\frac{3a}{18}=\frac{4b}{16}=\frac{3a+4b-c}{18+16-3}=\frac{72}{31}\)
=> \(\hept{\begin{cases}a=\frac{432}{31}\\b=\frac{288}{31}\\c=\frac{216}{31}\end{cases}}\)
Ta có : 4a = 3b => 28a = 21b (1)
7b = 5c => 21b = 15c (2)
Từ (1) và (2) => 28a = 21b = 15c
Ta có : 28a = 21b = 15c \(=\frac{a}{\frac{1}{28}}=\frac{b}{\frac{1}{21}}=\frac{c}{\frac{1}{15}}=\frac{2a}{\frac{1}{14}}=\frac{3b}{\frac{1}{7}}=\frac{2a+3b-c}{\frac{1}{14}+\frac{1}{7}-\frac{1}{15}}=\frac{186}{\frac{31}{210}}=1260\)
Nên : 28a = 1260 => a = 45
21b = 1260 => b = 60
15c = 1260 => c = 84
Vậy ........................
Ta có:
\(4a=3b\)=> \(\frac{a}{3}=\frac{b}{4}\)=> \(\frac{a}{15}=\frac{b}{20}\left(1\right)\)
\(7b=5c\)=>\(\frac{b}{5}=\frac{c}{7}\) => \(\frac{b}{20}=\frac{c}{28}\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\)
=>\(\frac{a}{15}=\frac{b}{20}=\frac{c}{28}\)=>\(\frac{2a}{30}=\frac{3b}{60}=\frac{c}{28}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2a}{30}=\frac{3b}{60}=\frac{c}{28}=\frac{2a+3b-c}{30+60-28}=\frac{186}{62}=3\)
=>\(\frac{a}{15}=3\)=>\(a=45\)
\(\frac{b}{20}=3\)=>\(b=60\)
\(\frac{c}{28}=3\)=>\(c=84\)
Vậy \(a=40;b=60;c=84\)
Ta có: \(2a=3b\)=> \(\frac{a}{3}=\frac{b}{2}\)=>\(\frac{a}{21}=\frac{b}{14}\left(1\right)\)
\(5b=7c\)=>\(\frac{b}{7}=\frac{c}{5}\) =>\(\frac{b}{14}=\frac{c}{10}\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\)
=>\(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)=> \(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b+5c}{63-98+50}=\frac{30}{15}=2\)
=>\(\frac{a}{21}=2\)=>\(a=42\)
\(\frac{b}{14}=2\)=>\(b=28\)
\(\frac{c}{10}=2\)=>\(c=20\)
Vậy \(a=42;b=28;c=20\)