tính:A=2^2+4^2+6^2+...+98^2+100^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{A = 1-2-3-4+5-6-7-8+9-10-11-12+...........+97-98-99-100}\)
\(\text{A =(1-2-3-4)+(5-6-7-8)+(9-10-11-12)+.............+(97-98-99-100)}\)
\(\text{A =-8+(-16)+(-24)+..................+(-200)}\)
\(\text{A =-8.(1+2+3+......+25)}\)
\(\text{A =-8.[(25-1):1+1.26:2]}\)
\(\text{A =-8.325}\)
\(\text{A =-2600 Vậy A = -2600 }\)
=1+(2-3-4+5)+(6-7-8+9)+...+(98-99-100+101)+102
=1+0+0+0+....+102
=103
k mk nha
Đặt \(A=\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+...+\frac{2}{96\cdot98}+\frac{2}{98\cdot100}\)
\(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\)
\(A=\frac{1}{2}-\frac{1}{100}\)
\(A=\frac{50}{100}-\frac{1}{100}=\frac{49}{100}\)
2/2.4 + 2/4.6 + 2/6.8 + ... + 2/98.100
= 1/2 - 1/4 + 1/4 - 1/6 + 1/6 - 1/8 + ... + 1/98 - 1/100
= 1/2 + (-1/4 + 1/4) + (-1/6 + 1/6) + ... + (-1/98 + 1/98) - 1/100
= 1/2 - 1/100 = 49/100
\(\frac{100+98+96+94+...+4+2}{100-98+96-94+...+4-2}\)
\(=\frac{\text{[}\left(100-2\right):1+1\text{]}.102:2}{2+2+2+...+2\left(51s\text{ố}2\right)}\)
\(=\frac{5049}{102}=49\frac{1}{2}\)
\(A=\dfrac{101\cdot\dfrac{102}{2}}{\left(101-100\right)+99-98+...+3-2+1}\)
\(=\dfrac{101\cdot51}{1+1+...+1}=\dfrac{101\cdot51}{51}=101\)
\(B=\dfrac{37\cdot43\left(101-101\right)}{2+4+...+100}=0\)
a, \(A=\dfrac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)
Ta có: \(T=101+100+99+98+...+3+2+1\) \(=\dfrac{\left(101+1\right).101}{2}\)
\(=\dfrac{102.101}{2}\Leftrightarrow51.101\)
\(M=101-100+99-98+...+3-2+1\)
Ta có: \(101:2=50\) (dư \(1\))
\(\Rightarrow M=\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1\)
Có \(50\) dấu ngoặc tròn "\(\left(\right)\)"
\(\Rightarrow M=1+1+...+1+1=51.1=51\)
\(M\) có \(51\) số \(1\)
\(\Rightarrow A=\dfrac{T}{M}=\dfrac{51.101}{51}=101\)
Vậy \(A=101\)
b, \(B=\dfrac{3737.43-4343.37}{2+4+6+...100}\)
Ta có: \(T=3737.43-4343.37\)
\(T=37.101.43-43.101.37\)
\(T=0\)
\(\Rightarrow\) \(B=\dfrac{T}{2+4+6+...+100}=\dfrac{0}{2+4+6+...+100}\) \(=0\)
Vậy \(B=0\)
\(S=1+2^2+2^4+...+2^{100}\)
\(2^2S=2^2\cdot\left(1+2^2+2^4+...+2^{100}\right)\)
\(4S=2^2+2^4+...+2^{102}\)
\(4S-S=2^2+2^4+...+2^{102}-1-2^2-...-2^{100}\)
\(3S=2^{102}-1\)
\(S=\dfrac{2^{102}-1}{3}\)
A = 2^2 + 4^2 + 6^2 +...+ 100^2
A = (2.1)^2 + (2.2)^2 + ... + (2.50)^2
A = 2^2.1^2 + 2^2.2^2 + ... + 2^2.50^2
A = 2^2(1^2 + 2^2 + ... + 50^2)
A = 4.\(\frac{5.\left(50+1\right).\left(2.50+1\right)}{6}\)
A = 4.4292,5 = 17170