cho a,b,c > 0. chứng tỏ: A=\(\frac{a}{a+b}\)+\(\frac{b}{b+c}\)+\(\frac{c}{c+a}\) \(\notinℤ\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có: \(\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+b+c};\frac{c}{a+c}>\frac{c}{a+b+c}\)
\(\Rightarrow M>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\left(1\right)\)
Lại có: \(M=\frac{\left(a+b\right)-b}{a+b}+\frac{\left(b+c\right)-c}{b+c}+\frac{\left(c+a\right)-a}{c+a}=3-\left(\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{c+a}\right)< 3-1=2\left(2\right)\)
Từ (1) và (2) => 1<M<2 => đpcm


a, \(\frac{a}{b}=\frac{ad}{bd};\frac{c}{d}=\frac{bc}{bd}\)
Mà \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow ad< bc\)
b, Theo câu a ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\Rightarrow ad+ab< bc+ab\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)
Lại có: \(ad< bc\Rightarrow ad+cd< bc+cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)
Từ (1) và (2) => đpcm
a, \(\frac{a}{b}=\frac{ad}{bd};\frac{c}{d}=\frac{bc}{bd}\)
Mà \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow ad< bc\)
b, Theo câu a, ta có:
\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\Rightarrow ad+ab< bc+ab\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)(1)
Lại có: \(ad< bc\Rightarrow ad+cd< bc+cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)(2)
Từ (1) và (2) => đpcm.

tương tự bài này :
https://vn.answers.yahoo.com/question/index?qid=20100728065830AAMp07Z
Vì a+b<a+b+c=>a/(a+b)>a/(a+b+c)
Vì b+c<a+b+c=>b/b+c>b/(a+b+c)
Vì c+a<a+b+c=>c/c+a>c/(a+b+c)
=>a/a+b+b/(b+c)+c/c+a>a/(a+b+c)+b/(a+b+c)+c/(a+b+c)=(a+b+c)/(a+b+c)=1
=>a/a+b+b/b+c+c/c+a>1
=> điều phải chứng minh
Mình viết hơi khó đọc. bạn thông cảm nha !


Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b}=\frac{c}{d}=\frac{c-a}{d-b}.\)
Lại có: \(d>c>b>a.\)
\(\Rightarrow d-b>a-c\)
\(\Rightarrow a+d>b+c\left(đpcm\right).\)
Chúc bạn học tốt!
Ta có: \(\frac{a}{b}\)=\(\frac{c}{d}\)=\(\frac{c-a}{d-b}\)
Mà d>c>b>a\(\Rightarrow\)d-b>c-a⇒d+a>c+b⇒Điều cần chứng minh

TA CÓ: \(\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+b+c};\frac{c}{c+a}>\frac{c}{a+b+c}\)
=> \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a+b+c}{a+b+c}=1\left(1\right)\)
TA LUÔN CÓ: \(\frac{a}{a+b}< \frac{a+c}{a+b+c};\frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{c+a}< \frac{c+b}{a+b+c}\)
=> \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+b+b+c+c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\left(2\right)\)
TỪ (1) VÀ (2) => \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
VẬY TA CÓ ĐPCM.
Cho \(B=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
Cm B>1
Ta có \(\frac{a}{a+b+c}< \frac{a}{a+b}\)(vì phân số cùng tử thì mẫu số nào lớn hơn thì phân số đó bé hơn)
CM tương tự ta có\(\frac{b}{a+b+c}< \frac{b}{b+c}\)
\(\frac{c}{a+b+c}< \frac{c}{c+a}\)
Cộng vế theo vế ta có \(\frac{a+b+c}{a+b+c}< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
1 < B
CM B<2
Ta có \(\frac{a}{a+b}< \frac{a+c}{a+b+c}\)( Vì ta có công thức \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{b+m}\)
Cm tương tự như phần trên rồi cộng vế theo vế ta có B<2
\(\frac{a}{a+b}>\frac{a}{a+b+c}\)
\(\frac{a}{a+b}< \frac{a+c}{a+b+c}\)( ez nên bn tự làm nha )
\(\Rightarrow\frac{a}{a+b+c}< \frac{a}{a+b}< \frac{a+c}{a+b+c}\)
Tương tự \(\frac{b}{a+b+c}< \frac{b}{b+c}< \frac{b+a}{a+b+c}\)
\(\frac{c}{a+b+c}< \frac{c}{c+a}< \frac{c+b}{a+b+c}\)
\(\Rightarrow1< A< 2\Rightarrowđpcm\)