K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 11 2019

\(\frac{x+y}{xy}=\frac{1}{617}\Leftrightarrow xy-617x-617y=0\)

\(\Leftrightarrow x\left(y-617\right)-617\left(y-617\right)=617^2\)

\(\Leftrightarrow\left(x-617\right)\left(y-617\right)=617^2\)

Phương trình ước số với \(617\) là số nguyên tố

1 tháng 5 2020

Ta có:

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Leftrightarrow\left(a+b\right)c=ab\Leftrightarrow ab-bc-ab=0\)

Hay \(ab-bc-ab+c^2=c^2\Leftrightarrow\left(b-c\right)\left(a-c\right)=c^2\)

Nếu \(\left(b-c;a-c\right)=d\ne1\Rightarrow c^2=d^2\left(loai\right)\)

Vậy \(\left(b-c;a-c\right)=1\Rightarrow c-b;c-a\) là 2 số chính phương

Đặt \(b-c=n^2;a-c=m^2\)

\(\Rightarrow a+b=b-c+a-c+2c=m^2+n^2+2mn=\left(m+n\right)^2\) là số chính phương

26 tháng 7 2024

cho mình hỏi tại sao ở TH1: c^2=d^2 lại loại vậy ạ

 

13 tháng 1 2020

a

Nếu  \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)

Nếu \(y>0\Rightarrow3^y⋮3\)

Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý

Vậy.....

b

Không mất tính tổng quát giả sử \(x\ge y\)

Ta có:

\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)

\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)

Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )

Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)

Vậy x=4;y=2 và các hoán vị

13 tháng 1 2020

câu a làm cách khác đi bạn

10 tháng 2 2019

1. Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a=x^3+3xy^2,b=y^3+3x^2y\) (a;b > 0)

(Bất đẳng thức này a;b > 0 mới dùng được)

\(A\ge\frac{4}{x^3+3xy^2+y^3+3x^2y}=\frac{4}{\left(x+y\right)^3}\ge\frac{4}{1^3}=4\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x^3+3xy^2=y^3+3x^2y\\x+y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x^3-3x^2y+3xy^2-y^3=0\\x+y=1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^3=0\\x+y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)

10 tháng 2 2020

Tham khảo câu hỏi tương tự  : https://olm.vn/hoi-dap/detail/2739228605.html

18 tháng 5 2016

\(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\)

<=> \(\frac{y+x}{xy}=\frac{1}{2}\)

<=> \(2x+2y=xy\)

<=> \(2x-xy+2y=0\)

<=> \(x\left(2-y\right)+2y-4+4=0\)

<=> \(x\left(2-y\right)-2\left(2-y\right)=-4\)

<=>\(\left(x-2\right)\left(2-y\right)=-4\)

x;y duong nen ta co x-2 va 2-y la cac uoc cua -4

x-21-12-24-4      
2-y-44-22-11      
x            
y            
18 tháng 5 2016

Từ \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\Leftrightarrow\frac{2x+2y}{2xy}=\frac{xy}{2xy}\Rightarrow2x+2y=xy\)

\(\Rightarrow2y-xy=-2x\)

\(\Rightarrow y\left(2-x\right)=-2x\)

\(\Rightarrow y=-\frac{2x}{2-x}\)

\(\Rightarrow y=\frac{2x}{x-2}\)

\(\Rightarrow y=\frac{2x-4+4}{x-2}\)

\(\Rightarrow y=\frac{2\left(x-2\right)+4}{x-2}\)

\(\Rightarrow y=2+\frac{4}{x-2}\)

Vì y là số nguyên dương nên \(2+\frac{4}{x-2}\) dương 

\(\Rightarrow\frac{4}{x-2}\) dương \(\Rightarrow x-2\in\text{Ư}\left(4\right)=\left\{1;2;4\right\}\)

\(x-2=1=>x=3\left(tm\right)\)

\(x-2=2=>x=0\left(lo\text{ại}\right)\)

\(x-2=4=>x=6\left(tm\right)\)

* Với \(x=3\Rightarrow y=2+\frac{4}{3-2}=2+4=6\left(tm\right)\)

*Với \(x=6=>y=2+\frac{4}{6-2}=2+1=3\left(tm\right)\)

Vậy các cặp số nguyên dương \(\left(x;y\right)\) cần tìm là  \(\left(3;6\right);\left(6;3\right)\)

16 tháng 6 2020

Ai giúp em với ạ

16 tháng 6 2020

1. Ta có: \(x^2-2xy-x+y+3=0\)

<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)

<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)

<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)

<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)

Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)

Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)

Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)

Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)

Kết luận:...

7 tháng 12 2015

Bài này bạn đăng rồi Nguyễn Nhật Minh trả lời đúng rồi mà :

http://olm.vn/hoi-dap/question/314450.html

7 tháng 12 2015

1)

\(xy-y=x\Leftrightarrow y=\frac{x}{x-1}=1+\frac{1}{x-1}\)

y thuộc Z => x -1 thuộc U(1) ={ -1;1}

+x =-1 => y =0

+x =1 => y =2

2) \(x.\left(1-\frac{1}{7}\right)<1\frac{6}{7}\Leftrightarrow x.\frac{6}{7}<\frac{13}{7}\Rightarrow x<\frac{13}{7}.\frac{7}{6}=\frac{13}{6}=2,1\left(6\right)\)

x thuộc Z+ => x thuộc {1;2}

7 tháng 12 2015

khỉ gió khó quá