K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2019

GTNN của A thì x phải =0

20 tháng 12 2017

gtnn cua bieu thuc tren la : 47 .

x = - 8 hoac x = - 13 .

20 tháng 12 2017

câu hỏi có gì đó sai sai

thứ nhất thiếu điều kiện hoặc là thiếu kết quả

19 tháng 10 2021

\(1,x^2+4x-2=\left(x+2\right)^2-6\ge6\)

Dấu \("="\Leftrightarrow x=-2\)

\(2.x^2+7x+1=\left(x+\dfrac{7}{2}\right)^2-\dfrac{45}{4}\ge-\dfrac{45}{4}\)

Dấu \("="\Leftrightarrow x=-\dfrac{7}{2}\)

\(3,25x^2+30x+11=\left(5x+3\right)^2+2\ge2\)

Dấu \("="\Leftrightarrow x=-\dfrac{3}{5}\)

1 tháng 1 2018

a, Ta có: A =| x - 3 | + 50 \(\ge50\)

\(\Leftrightarrow MinA=50.\)Dấu '=' xảy ra khi và chỉ khi x-3 = 0 \(\Leftrightarrow\) x=3

b, Ta có: B =2014 - | x + 8 | \(\ge2014\)

\(\Leftrightarrow MaxB=2014.\)Dấu '=' xảy ra khi và chỉ khi x+8=0\(\Leftrightarrow\) x=-8

CÂU NÀY PHẢI TÌM GTLN NHA BN! GTNN KO CÓ ĐÂU!

c, Ta có: C = | x-100 | + | y +2014 | - 2015 \(\ge-2015\)

\(\Leftrightarrow MinC=-2015.\)Dấu '=' xảy ra khi và chỉ khi \(\hept{\begin{cases}x-100=0\\y+2014=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=100\\y=-2014\end{cases}}\)

28 tháng 11 2018

\(A=\left(x+2\right)\left(x-1\right)\left(x+5\right)\left(x+8\right)\)

\(A=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x-1\right)\left(x+8\right)\right]\)

\(A=\left(x^2+7x+10\right)\left(x^2+7x-8\right)\)

Đặt \(t=x^2+7x+1\)ta có :

\(A=\left(t+9\right)\left(t-9\right)\)

\(A=t^2-9^2=t^2-81\ge-81\)

Dấu "=" xảy ra \(\Leftrightarrow x^2+7x+1=0\)

7 tháng 2 2017

\(\left|x+8\right|+\left|x+13\right|=\left|x+8\right|+\left|-x-13\right|\)

Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có :

\(\left|x+8\right|+\left|-x-13\right|\ge\left|x+8-x-13\right|=\left|-5\right|=5\)

\(\Rightarrow A\ge\left|x+50\right|+5\ge5\)

Dấu "=" xảy ra <=> |x + 50| = 0 => x = - 50

Vậy gtnn của A là 5 tại x = - 50

2 tháng 1 2018

a, Vì |x-3| \(\ge\)0

=>A=|x-3|+50\(\ge\)50

Dấu "=" xảy ra khi x=3

Vậy GTNN của A = 50 khi x=3

b, Vì |x+8| \(\ge0\)

=>B=2014-|x+8|\(\le2014\)

Dấu "=" xảy ra khi x=-8

Vậy GTLN của B = 2014 khi x=-8

c, Vì \(\hept{\begin{cases}\left|x-100\right|\ge0\\\left|y+2014\right|\ge0\end{cases}}\)

\(\Rightarrow\left|x-100\right|+\left|y+2014\right|\ge0\)

\(\Rightarrow C=\left|x-100\right|+\left|y+2014\right|-2015\ge-2015\)

Dấu "=" xảy ra khi x=100,y=-2014

Vậy GTNN của C=-2015 khi x=100,y=-2014

3 tháng 1 2018

\(x = {{b^2} \over 2a}\)

28 tháng 7 2020

+) \(B=6\sqrt{x-2}+6\sqrt{5-x}\Leftrightarrow B^2=\left(6\sqrt{x-2}+6\sqrt{5-x}\right)^2\)

\(=36\left(x-2\right)+36\left(5-x\right)+72\sqrt{\left(x-2\right)\left(5-x\right)}\ge108\Rightarrow B\ge6\sqrt{3}\)

+) \(A=B+2\sqrt{5-x}\ge6\sqrt{3}\)

Vậy \(A_{min}=6\sqrt{3}\)khi x=5

28 tháng 7 2020

+) Đặt \(a=\sqrt{x-2};b=\sqrt{5-x}\)

+) Ta có: \(a^2+b^2=3\) 

+) \(\left(a^2+b^2\right)\left(6^2+8^2\right)\ge\left(6a+8b\right)^2\Leftrightarrow\left(6a+8b\right)^2\le300\Rightarrow6a+8b\le10\sqrt{3}\)

Dấu = xảy ra khi \(\frac{a}{6}=\frac{b}{8}\Leftrightarrow\frac{\sqrt{x-2}}{6}=\frac{\sqrt{5-x}}{8}\Leftrightarrow\frac{x-2}{36}=\frac{5-x}{64}\Leftrightarrow64x-128=180-36x\Leftrightarrow308=100x\)

\(\Leftrightarrow x=3.08\)

Vậy \(A_{max}=10\sqrt{3}\)khi x=3.08

12 tháng 7 2018

1/ Câu hỏi của Jey - Toán lớp 7 - Học toán với OnlineMath

2/ \(\left(a-b\right)^2+6ab=36\Rightarrow6ab=36-\left(a-b\right)^2\le36\Rightarrow ab\le\frac{36}{6}=6\)

Dấu "=" xảy ra khi \(\orbr{\begin{cases}a=b=\sqrt{6}\\a=b=-\sqrt{6}\end{cases}}\)

Vậy abmax = 6 khi \(\orbr{\begin{cases}a=b=\sqrt{6}\\a=b=-\sqrt{6}\end{cases}}\)

3/ 

a, Để A đạt gtln <=> 17/13-x đạt gtln <=> 13-x đạt gtnn và 13-x > 0

=> 13-x = 1 => x = 12

Khi đó \(A=\frac{17}{13-12}=17\)

Vậy Amax = 17 khi x = 12

b, \(B=\frac{32-2x}{11-x}=\frac{22-2x+10}{11-x}=\frac{2\left(11-x\right)+10}{11-x}=2+\frac{10}{11-x}\)

Để B đạt gtln <=> \(\frac{10}{11-x}\) đạt gtln <=> 11-x đạt gtnn và 11-x > 0

=>11-x=1 => x=10

Khi đó \(B=\frac{10}{11-10}=10\)

Vậy Bmax = 10 khi x=10

13 tháng 7 2018

bạn trả lời đúng rùi

31 tháng 3 2018

Với mọi x ta có :

\(\left|x+50\right|=\left|-x-50\right|\)

\(\Leftrightarrow\left|x+8\right|+\left|x+50\right|=\left|x+8\right|+\left|-50-x\right|\)

\(\Leftrightarrow\left|x+8\right|+\left|-x-50\right|\ge\left|\left(x+8\right)+\left(-x-50\right)\right|\)

\(\Leftrightarrow\left|x+8\right|+\left|-x-50\right|\ge42\)

\(\left|x+13\right|\ge0\)

\(\Leftrightarrow\left|x+8\right|+\left|-x-50\right|+\left|x+13\right|+2018\ge2060\)

\(\Leftrightarrow A\ge2060\)

Dấu "=" xảy ra khi :

\(\left\{{}\begin{matrix}\left(x+8\right)\left(-x-50\right)\ge0\left(1\right)\\\left|x+13\right|=0\left(2\right)\end{matrix}\right.\)

Từ \(\left(1\right)\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+8\ge0\\-x-50\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x+8\le0\\-x-50\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-8\\-50\ge x\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-8\\-50\le x\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\\-50\le x\le-8\end{matrix}\right.\)

\(\Leftrightarrow-50\le x\le-8\left(I\right)\)

Từ \(\left(2\right)\Leftrightarrow x+13=0\)

\(\Leftrightarrow x=-13\left(II\right)\)

Từ \(\left(I\right)+\left(II\right)\Leftrightarrow A_{Min}=2060\Leftrightarrow x=-13\)