K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2019

Ta có:

\(VT=1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}\)

\(=\frac{n^2\left(n+1\right)^2}{n^2\left(n+1\right)^2}+\frac{\left(n+1\right)^2}{n^2\left(n+1\right)^2}+\frac{n^2}{n^2\left(n+1\right)^2}\)

\(=\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}\)

\(=\frac{\left[n\left(n+1\right)\right]^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}\)

\(=\frac{\left[n\left(n+1\right)\right]^2+n^2+2n+1+n^2}{n^2\left(n+1\right)}\left(1\right)\)

\(VP=\frac{\left(n^2+n+1\right)}{n^2\left(n+1\right)^2}\)

\(=\frac{\left[n\left(n+1\right)+1\right]^2}{n^2\left(n+1\right)^2}\)

\(=\frac{\left[n\left(n+1\right)\right]^2+1+2\left[n\left(n+1\right)\right]}{n^2\left(n+1\right)^2}\)

\(=\frac{\left[n\left(n+1\right)\right]^2+1+2\left(n^2+1\right)}{n^2\left(n+1\right)^2}\)

\(=\frac{\left[n\left(n+1\right)\right]^2+1+2n^2+2n}{n^2\left(n+1\right)^2}\)

\(=\frac{\left[n\left(n+1\right)\right]^2+2n+1+2n^2}{n^2\left(n+1\right)^2}\left(2\right)\)

Từ (1) và (2)

=>đpcm

2 tháng 11 2019

Vì \(\sqrt{x}\)là một số hữu tỉ

\(\Rightarrow\sqrt{x}\)có dạng \(\frac{a}{b}\)(\(\frac{a}{b}\)là một phân số tối giản)

Vì \(\sqrt{x}\ge0\)và theo đề bài \(\frac{a}{b}\ne0\Rightarrow\frac{a}{b}\ge0\)

\(\Rightarrow a,b\)là những số nguyên dương (1)

Vì \(\sqrt{x}\)có dạng \(\frac{a}{b}\Rightarrow\left(\sqrt{x}\right)^2=\left(\frac{a}{b}\right)^2\Rightarrow x=\frac{a^2}{b^2}\)(2)

Vì \(\frac{a}{b}\)là phân số tối giản

\(\Rightarrow a,b\)là hai số nguyên tố cùng nhau

\(\Rightarrow\)ƯCLN(a,b)=1

Vì \(a^2\) có Ư(a), \(b^2\)có Ư(b)

\(\Rightarrow a^2,b^2\) là hai số nguyên tố cùng nhau

\(\Rightarrow\)ƯCLN(\(a^2,b^2\))=1

\(\Rightarrow\frac{a^2}{b^2}\) là phân số tối giản (3)

Từ (1), (2) và (3)

=>đpcm

27 tháng 2 2015

phân số nên mik k viết đc

26 tháng 10 2017

Nếu \(\sqrt{x}\) là một số hữa tỉ thì có phân số \(\dfrac{a}{b}\) tối giản sao cho :
\(\sqrt{x}=\dfrac{a}{b}\Leftrightarrow x=\dfrac{a^2}{b^2}\).
Do phân số \(\dfrac{a}{b}\) là phân số tối giản nên \(\left(a,b\right)=1\) (a và b là hai số nguyên tố cùng nhau) nên \(a^2\)\(b^2\) cũng là hai số nguyên tố cùng nhau.
Giả sử ngược lại nếu \(a^2\)\(b^2\) không là hai số nguyên tố cùng nhau. Gọi d là ước chung của \(a^2\)\(b^2\) (d > 1).
Do \(a^2\)\(b^2\) là hai số chính phương nên a, b cùng chia hết cho d (mâu thuẫn).
Vậy \(a^2\)\(b^2\) cũng là hai số nguyên tố cùng nhau nên phân số \(\dfrac{a^2}{b^2}\) tối giản. Ta có điều phải chứng minh.

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

a)      \(384{\rm{ }}400 = 3,{844.10^5}\) km

b)      \(1989{\rm{ }}.{\rm{ }}{10^{27}} =1,989.10^3.10^{27}= 1,{989.10^{30}}\)kg

c)      \(1{\rm{ }}898{\rm{ }}.{\rm{ }}{10^{24}} =1,898.10^3. 10^{24}=1,{898.10^{27}}\)kg