giải hệ phương trình \(\hept{\begin{cases}x^2+y^2=1\\y^2+z^2=2\\x^2+z^2=3\end{cases}}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
OA
Giải hệ phương trình: \(\hept{\begin{cases}x=y^3+y^2+y-2\\y=z^3+z^2+z-2\\z=x^3+x^2+x-2\end{cases}}\)
0
1 tháng 3 2020
\(\hept{\begin{cases}x+y-z=7\\x^2+y^2-z^2=37\\x^3+y^3-z^3=1\end{cases}}\)<=> \(\hept{\begin{cases}x+y=7+z\\x^2+y^2=37+z^2\\x^3+y^3=1+z^3\end{cases}}\)
Ta có: \(x^2+y^2=37+z^2\)
<=> \(\left(x+y\right)^2-2xy=37+z^2\)
<=> \(2xy=\left(7+z\right)^2-37-z^2\)
<=> \(xy=6+7z\)
Ta có: \(x^3+y^3=1+z^3\)
<=> \(\left(x+y\right)\left(x^2+y^2-xy\right)=1+z^3\)
<=> \(\left(7+z\right)\left(37+z^2-6-7z\right)=1+z^3\)đây là phương trình bậc 2. Em giải ra tìm z => x; y