Chứng minh rằng :
C = 4 +\(^24\) + \(^34\) + ......... + \(^{24}4\) \(⋮\) 420
Giúp mình nha !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=\(\dfrac{4^2}{20.24}+\dfrac{4^2}{24.28}+...+\dfrac{4^2}{76.80}\)
A=\(\dfrac{16}{20.24}+\dfrac{16}{24.28}+...+\dfrac{16}{76.80}\)
A=4.[\(\dfrac{4}{20.24}+\dfrac{4}{24.28}+...+\dfrac{4}{76.80}\)]
A=4.\(\left[\dfrac{1}{20}-\dfrac{1}{24}+\dfrac{1}{24}-\dfrac{1}{28}+...+\dfrac{1}{76}-\dfrac{1}{80}\right]\)
A=4.\(\left[\dfrac{1}{20}+\dfrac{1}{24}-\dfrac{1}{24}+\dfrac{1}{28}-\dfrac{1}{28}+...+\dfrac{1}{78}-\dfrac{1}{78}-\dfrac{1}{80}\right]\)
A=4.\(\left[\dfrac{1}{20}-\dfrac{1}{80}\right]\)
A=4.\(\dfrac{3}{80}\)
A=\(\dfrac{3}{20}\)<1
=>A<1
Tick mink nha
Bạn kiểm tra lại, hình như đều là lũy thừa 3 ở các mẫu số chứ?
đặt 2n + 34 = a^2
34 = a^2-n^2
34=(a-n)(a+n)
a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)
=> a-n 1 2
a+n 34 17
Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ
Vậy ....
Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.
=> S= (1004+14).100:2=50 900 ko là SCP
A = 8⁸ + 2²⁰
= (2³)⁸ + 2²⁰
= 2²⁴ + 2²⁰
= 2²⁰.(2⁴ + 1)
= 2²⁰.17 ⋮ 17
Vậy A ⋮ 17
Ta có: \(\frac{4^2}{20.24}+\frac{4^2}{24.28}+...+\frac{4^2}{76.80}\)
\(=4.\left(\frac{4}{20.24}+\frac{4}{24.28}+...+\frac{4}{76.80}\right)\)
\(=4.\left(\frac{1}{20}-\frac{1}{24}+\frac{1}{24}-\frac{1}{28}+...+\frac{1}{76}-\frac{1}{80}\right)\)
\(=4.\left(\frac{1}{20}-\frac{1}{80}\right)=4.\frac{3}{80}=\frac{3}{20}< 1\)
Vậy \(\frac{4^2}{20.24}+\frac{4^2}{24.28}+...+\frac{4^2}{76.80}< 1\)
Câu 1:
$A=(2+2^2)+(2^3+2^4)+(2^5+2^6)+....+(2^{2019}+2^{2020})$
$=2(1+2)+2^3(1+2)+2^5(1+2)+....+2^{2019}(1+2)$
$=(1+2)(2+2^3+2^5+...+2^{2019})=3(2+2^3+2^5+...+2^{2019})\vdots 3$
-----------------
$A=2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^{2018}+2^{2019}+2^{2020})$
$=2+2^2(1+2+2^2)+2^5(1+2+2^2)+....+2^{2018}(1+2+2^2)$
$=2+(1+2+2^2)(2^2+2^5+....+2^{2018})$
$=2+7(2^2+2^5+...+2^{2018})$
$\Rightarrow A$ chia $7$ dư $2$.
Câu 2:
$B=(3+3^2)+(3^3+3^4)+....+(3^{2021}+3^{2022})$
$=3(1+3)+3^3(1+3)+...+3^{2021}(1+3)$
$=(1+3)(3+3^3+...+3^{2021})=4(3+3^3+....+3^{2021})\vdots 4$
-------------------
$B=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^{2020}+3^{2021}+3^{2022})$
$=3(1+3+3^2)+3^4(1+3+3^2)+....+3^{2020}(1+3+3^2)$
$=(1+3+3^2)(3+3^4+...+3^{2020})=13(3+3^4+...+3^{2020})\vdots 13$ (đpcm)
2 mũ 4 hay 4 mũ 2 vậy bạn
4 mũ 2 nhé .