K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2020

\(-\left(-a+b+c\right)+\left(b+c-1\right)=\left(b-c+6\right)-\left(7-a+b\right)+c\)

Ta có:

\(-\left(-a+b+c\right)+\left(b+c-1\right)\)

\(=a-b-c+b+c-1\)

\(=a-\left(b-b\right)-\left(c-c\right)-1\)

\(=a-0-0-1\)

\(=a-1\) (1).

\(\left(b-c+6\right)-\left(7-a+b\right)+c\)

\(=b-c+6-7+a-b+c\)

\(=\left(b-b\right)-\left(c-c\right)+a+\left(6-7\right)\)

\(=0-0+a-1\)

\(=a-1\) (2).

Từ (1) và (2) \(\Rightarrow-\left(-a+b+c\right)+\left(b+c-1\right)=\left(b-c+6\right)-\left(7-a+b\right)+c\left(đpcm\right).\)

Chúc bạn học tốt!

14 tháng 1 2020

Trường học Toán Pitago – Hướng dẫn Giải toán – Hỏi toán - Học toán lớp 3,4,5,6,7,8,9 - Học toán trên mạng - Học toán online

Câu trả lời nằm ở đó !













AH
Akai Haruma
Giáo viên
6 tháng 1

Lời giải:

$3\text{VT}=\frac{3a}{3a+1}+\frac{3b}{3b+1}+\frac{3c}{3c+1}$

$=1-\frac{1}{3a+1}+1-\frac{1}{3b+1}+1-\frac{1}{3c+1}$

$=3-\left[\frac{1}{3a+1}+\frac{1}{3b+1}+\frac{1}{3c+1}\right]$
Áp dụng BĐT Cauchy-Schwarz:

$\frac{1}{3a+1}+\frac{1}{3b+1}+\frac{1}{3c+1}\geq \frac{9}{3a+1+3b+1+3c+1}=\frac{9}{3(a+b+c)+3}=\frac{9}{3.6+3}=\frac{3}{7}$

$\Rightarrow 3\text{VT}\leq 3-\frac{3}{7}=\frac{18}{7}$

$\Rightarrow \text{VT}\leq \frac{6}{7}$ (đpcm)

Dấu "=" xảy ra khi $a=b=c=2$

7 tháng 2 2017

\(a\)) \(Ta\) \(có\)\(:\) \(\left(a-b\right)-\left(c-d\right)=a-b-c+d\)

\(=a+\left(-b\right)+\left(-c\right)+d\)

\(=\left(a+d\right)+\left[\left(-b\right)+\left(-c\right)\right]\)

\(=\left(a+d\right)+\left[-\left(b+c\right)\right]\)

\(=\left(a+d\right)-\left(b+c\right)\)

6 tháng 3 2016

a)

-(-a+b+c)+(b+c-1)=a-b-c+b+c-1=a-1

(b-c+6)-(7-a+b)+c=b-c+6-7+a-b+c=a-1

suy ra -(-a+b+c)+(b+c-1)=(b-c+6)-(7-a+b)+c

6 tháng 3 2016

b)A+B=a+b-5-b-c+1=a-c-4

C-D=(b-c-4)-(b-a)=b-c-4-b+a=a-c-4

suy ra A+B=C-D

26 tháng 11 2018

\(\frac{a}{c}=\frac{c}{b}\Rightarrow\frac{a^2}{c^2}=\frac{c^2}{b^2}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a^2}{c^2}=\frac{c^2}{b^2}=\text{​​}\frac{a^2+c^2}{c^2+b^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{c}{b}=\frac{a}{b}\)

=> \(\frac{a}{b}=\frac{a^2+c^2}{b^2+c^2}\left(đpcm\right)\)

b) \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.55⋮55\left(đpcm\right)\)

27 tháng 11 2018

a) Từ \(\frac{a}{c}=\frac{c}{b}\)\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{c}{b}\right)^2=\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+c^2}{c^2+b^2}\)(1)

Ta có \(\left(\frac{a}{c}\right)^2=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{c}{b}=\frac{a}{b}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{a^2+c^2}{c^2+b^2}=\frac{a}{b}=\left(\frac{a}{c}\right)^2\left(đpcm\right)\)

b) Ta có \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.55⋮55\left(đpcm\right)\)

3 tháng 11

`A = 1 + 2 + 2^2 + 2^3 + ... + 2^41` $\\$

`2A = 2 + 2^2 + 2^3 + ... + 2^42`$\\$

`2A - A = (2 + 2^2 + 2^3 + ... + 2^42) - (1 + 2 + 2^2 + 2^3 + ... + 2^41)` $\\$

`2A - A = 2 + 2^2 + 2^3 + ... + 2^42 - 1 - 2 - 2^2 - 2^3 - ... - 2^41`$\\$

`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^41 - 2^41) + 2^42`$\\$

`2A - A = - 1 + 2^42`$\\$

hay `A = -1 + 2^42`$\\$

3 tháng 11

`A = 1 + 2 + 2^2 + 2^3 + ... + 2^{41}` $\\$

`2A = 2 + 2^2 + 2^3 + ... + 2^{42}`$\\$

`2A - A = (2 + 2^2 + 2^3 + ... + 2^{42}) - (1 + 2 + 2^2 + 2^3 + ... + 2^{41})` $\\$

`2A - A = 2 + 2^2 + 2^3 + ... + 2^{42} - 1 - 2 - 2^2 - 2^3 - ... - 2^{41}`$\\$

`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^{41} - 2^{41}) + 2^42`$\\$

`2A - A = - 1 + 2^{42}`$\\$

hay `A = -1 + 2^{42}`$\\$

7 tháng 7 2021

Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

<=> \(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

<=> \(\frac{a+b}{ab}=-\frac{a+b}{\left(a+b+c\right)c}\)

<=> \(\left(a+b\right)\left[\frac{1}{ab}+\frac{1}{\left(a+b+c\right).c}\right]=0\)

<=> \(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{ab\left(a+b+c\right)c}=0\)

<=> (a + b)(b + c)(c + a) = 0

<=> a = -b hoặc b = -c hoặc c = -a

Với a = -b => \(\frac{1}{a^7}+\frac{1}{b^7}+\frac{1}{c^7}=\frac{1}{-b^7}+\frac{1}{b^7}+\frac{1}{c^7}=\frac{1}{c^7}\left(1\right)\)

\(\frac{1}{a^7+b^7+c^7}=\frac{1}{-b^7+b^7+c^7}=\frac{1}{c^7}\left(2\right)\)

Từ (1) và (2) => \(\frac{1}{a^7}+\frac{1}{b^7}+\frac{1}{c^7}=\frac{1}{a^7+b^7+c^7}\)

Tương tự với b =- c và c = -a ta cũng chứng minh được đẳng thức trên 

=> ĐPCM