K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2015

=> (x+1)*x:2=55

=> (x+1)*x=55*2

=> (x+1)*x=110

Vì x+1 và x là 2 số tự nhiên liên tiếp và 110=10*11

=> x=10

24 tháng 9 2017

A = 1 + 2 + 3 +......+ x = 55 
<=> (1 + 9) + (2 + 8) + (3 + 7) + (4 + 6) + 5 +....+ x = 55 
<=> x = 55 - [(1 + 9) + (2 + 8) + (3 + 7) + (4 + 6) + 5 +....] 
<=> x = 55 - (45 + ...) 
<=> x = 10 - (....) 

Nếu x > 0 => x = 10 
Thì x < 0 => x = {-10; -20;....}

24 tháng 9 2017

1+2+3+...+x=55

<=> \(\left[\left(x-1\right):1+1\right].\left(x+1\right):2=55.\)

<=>  \(x.\left(x+1\right)=55.2\)

<=>  \(x.\left(x+1\right)=110\)

<=> \(x^2+x=100+10\)

<=> \(x^2+x=10^2+10\)

<=> \(x=10\)

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.

29 tháng 4 2023

thỏa mãn cái biểu thức á bạn, chỗ \(x_2\) ( trước dấu "=" ) có mũ 2 không?

29 tháng 4 2023

Theo đề là Ko bạn ạ. Thế nên mình mới nhờ các bạn giúp ạ

AH
Akai Haruma
Giáo viên
12 tháng 2 2018

Bài 1:

Để pt có hai nghiệm phân biệt thì \(\Delta=m^2-4(m-2)>0\Leftrightarrow m^2-4m+8>0\)

\(\Leftrightarrow (m-2)^2+4>0\) (luôn đúng với mọi \(m\in\mathbb{R}\) )

Khi đó áp dụng hệ thức Viete ta có: \(\left\{\begin{matrix} x_1+x_2=m\\ x_1x_2=m-2\end{matrix}\right.\)

a)

Từ đây ta có:

\(x_1^2+x_2^2=7\)

\(\Leftrightarrow (x_1+x_2)^2-2x_1x_2=7\)

\(\Leftrightarrow m^2-2(m-2)=7\)

\(\Leftrightarrow m^2-2m-3=0\)

\(\Leftrightarrow (m+1)(m-3)=0\Leftrightarrow \left[\begin{matrix} m=-1\\ m=3\end{matrix}\right.\) ((đều thỏa mãn)

b)

\(x_1^3+x_2^3=18\)

\(\Leftrightarrow (x_1+x_2)^3-3x_1x_2(x_1+x_2)=18\)

\(\Leftrightarrow m^3-3m(m-2)=18\)

\(\Leftrightarrow m^2(m-3)+6(m-3)=0\)

\(\Leftrightarrow (m-3)(m^2+6)=0\Leftrightarrow \left[\begin{matrix} m-3=0\\ m^2+6=0(\text{vô lý})\end{matrix}\right.\)

\(\Rightarrow m=3\)

AH
Akai Haruma
Giáo viên
12 tháng 2 2018

Bài 2:

PT có hai nghiệm phân biệt \(\Leftrightarrow \Delta'=m^2-(m^2-4)>0\Leftrightarrow 4>0\) (luôn đúng với mọi $m$)

Khi đó áp dụng hệ thức Viete ta có: \(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=m^2-4\end{matrix}\right.(*)\)

a) Ta có:

\(x_2=2x_1\Rightarrow \left\{\begin{matrix} x_1+2x_1=2m\\ 2x_1^2=m^2-4\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} 3x_1=2m\\ 2x_1^2=m^2-4\end{matrix}\right.\)

\(\Rightarrow \left(\frac{2m}{3}\right)^2=\frac{m^2-4}{2}\Leftrightarrow 8m^2=9m^2-36\)

\(\Leftrightarrow m^2=36\Rightarrow m=\pm 6\)

b)

\(3x_1+2x_2=7\)

\((*)\Leftrightarrow \left\{\begin{matrix} 2x_1+2x_2=4m\\ x_1.2x_2=2(m^2-4)\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} 2x_1+7-3x_1=4m\\ x_1(7-3x_1)=2m^2-8\end{matrix}\right.\)

Thay \(x_1=7-4m\) ta có : \(7x_1-3x_1^2=2m^2-8\)

\(\Leftrightarrow 7(7-4m)-3(7-4m)^2=2m^2-8\)

\(\Leftrightarrow 2m^2-8+3(7-4m)^2-7(7-4m)=0\)

\(\Leftrightarrow 50m^2-140m+90=0\)

\(\Leftrightarrow 10(m-1)(5m-9)=0\)

\(\Leftrightarrow \left[\begin{matrix} m=1\\ m=\frac{9}{5}\end{matrix}\right.\)