cho a b c la 3 cach cua 1 tam giac thoa \(2\left(a^2+b^2+c^2\right)=a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)\)'chứng minh tam giác abc đều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này hay:)
c = min {a,b,c}. Đặt
\(a-c=x;b-c=y\Rightarrow x,y\ge0\) và x + y = a + b - 2c \(=3-3c\le3\)
\(\Rightarrow a-b=x-y;c=\frac{3-x-y}{3}\)
\(a=x+c=x+\frac{3-x-y}{3}=\frac{2x-y+3}{3}\)
\(b=y+c=\frac{2y-x+3}{3}\)
Như vậy: \(K=\sqrt{4\left(2x-y+3\right)+y^2}+\sqrt{4\left(2y-x+3\right)+x^2}+\sqrt{4\left(3-x-y\right)+\left(x-y\right)^2}\)
\(=\sqrt{y^2-4y+8x+12}+\sqrt{x^2-4x+8y+12}+\sqrt{4\left(3-x-y\right)+\left(x-y\right)^2}\)
Giờ em đang bận, tối em làm tiếp!
\(12a+\left(b-c\right)^2=4a\left(a+b+c\right)+b^2-2bc+c^2\)
\(=4a^2+b^2+c^2+4ab+4ac+2bc-4bc\)
\(=\left(2a+b+c\right)^2-4bc\le\left(2a+b+c\right)^2\)
\(\Rightarrow\sqrt{12a+\left(b-c\right)^2}\le2a+b+c\)
Tương tự: \(\sqrt{12b+\left(a-c\right)^2}\le a+2b+c\); \(\sqrt{12c+\left(a-b\right)^2}\le a+b+2c\)
Cộng vế với vế:
\(K\le4\left(a+b+c\right)=12\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;3\right)\) và các hoán vị
a/ \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(\Rightarrow2A=3^{128}-1\Rightarrow A=\dfrac{3^{128}-1}{2}\)
a) \(A=\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(5x+5\right)^2\)
\(A=\left[\left(3x+1\right)-\left(5x+5\right)\right]^2\)
\(A=\left(-2x-4\right)^2\)
A = (3x + 1)2 - 2(3x + 1)(5x + 5) + (5x + 5)2
= [(3x + 1)-(5x + 5)]2
= (3x + 1 - 5x - 5)2
= [(-2x) - 4]2
B = (3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 +1)(332 + 1)
=> (3 - 1)B = (3 - 1)(3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 +1)(332 + 1)
=>2B = (32 - 1)(32 + 1)(34 + 1)(38 + 1)(316 +1)(332 + 1)
= (34 - 1)(34 + 1)(38 + 1)(316 +1)(332 + 1)
= (38 - 1)(38 + 1)(316 +1)(332 + 1)
= (316 - 1)316 +1)(332 + 1)
= (332 - 1)(332 + 1)
= 364 - 1
vì 2B = 364 - 1
=> B = \(\dfrac{3^{64}-1}{2}\)
C = a2 + b2 + c2 + 2ab - 2ac - 2bc + a2 + b2 + c2 - 2ab + 2ac - 2bc - 2( b2 - 2bc + c2)
= 2a2 + 2b2 + 2c2 - 4bc - 2b2 + 4bc - 2c2
= 2a2
Trần Huy tâm: Nếu đề sửa như bạn nói thì làm ntn nha:
Theo bài ra ta có:
\(2(a^3+b^3+c^3)=a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)\)
\(\Leftrightarrow 2(a^3+b^3+c^3)=ab(a+b)+bc(b+c)+ca(c+a)\)
\(\Leftrightarrow [a^3+b^3-ab(a+b)]+[b^3+c^3-bc(b+c)]+[c^3+a^3-ca(c+a)]=0\)
\(\Leftrightarrow [a^2(a-b)-b^2(a-b)]+[b^2(b-c)-c^2(b-c)]+[c^2(c-a)-a^2(c-a)]=0\)
\(\Leftrightarrow (a-b)^2(a+b)+(b-c)^2(b+c)+(c-a)^2(c+a)=0\)
Ta thấy với mọi $a,b,c$ là 3 cạnh tam giác thì $(a-b)^2(a+b); (b-c)^2(b+c); (c-a)^2(c+a)\geq 0$
Do đó để tổng của chúng bằng $0$ thì $(a-b)^2(a+b)=(b-c)^2(b+c)=(c-a)^2(c+a)=0$
$\Rightarrow (a-b)^2=(b-c)^2=(c-a)^2=0$ (do $a+b,b+c,c+a\neq 0$)
$\Rightarrow a=b=c$
Hay tam giác $ABC$ đều. Ta có đpcm.
Bạn xem lại đề xem có thiếu điều kiện gì không? 2 vế trong ĐKĐB không cùng bậc nên nếu không có thêm đk gì thì làm sao chứng minh được tam giác đều?