Cho hàm số y=5x2-4
a) Chứng tỏ : f(x) = f(-x)
b) Giả sử x1<x2<0. Chứng tỏ f(x1)>f(x2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co: y = 1/2 x
khi x1 > x2 thi suy ra:
1/2.x1 > 1/2 . x2 (dpcm)
- Vì F(x) và G(x) đều là nguyên hàm của f(x) nên tồn tại một hằng số C sao cho: F(x) = G(x) + C
- Khi đó F(b) – F(a) = G(b) + C – G(a) – C = G(b) – G(a).
y/x =k=1/4
y= f(x) =x/4
a) y = -5 =x/4 => x = -20
b) t đi, rùi làm tiếp
y=f(x)=5x2 -4
a) f(x) =5x2 -4 = 5(-x)2 -4 = f (-x) ; vì (-x)2 =x 2
b) x1<x2<0 => x1+x2<0 và x1 - x2 <0
f(x1) - f(x2) = (5x12- 4 )- (5x22 -4) = 5(x1-x2)(x1+x2) >0 ( theo trên)
=> f(x1) > f(x2)