Rut gon bieu thuc
\(A=x-2y-\sqrt{x^2-4xy+4y^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đk: x>=0; x khác 3
a) \(P=\frac{\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}-\frac{5}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}-3}=\frac{\sqrt{x}-3-5+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\frac{x+\sqrt{x}-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)
\(P=\frac{\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+4}{\sqrt{x}+2}\)
b) \(P=\frac{\sqrt{x}+2+2}{\sqrt{x}+2}=1+\frac{2}{\sqrt{x}+2}\)
ta có: \(x\ge0\Rightarrow\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+2\ge2\Leftrightarrow\frac{2}{\sqrt{x}+2}\le1\Leftrightarrow1+\frac{2}{\sqrt{x}+2}\le2\Rightarrow MaxP=2\Rightarrow x=0\)
\(P=2\left(x^2-y^2\right)-x^2+2xy-y^2+x^2+2xy+y^2-4y^2\)
\(=2\left(x^2-y^2\right)-4y^2+4xy\)
\(=2x^2-2y^2-4y^2+4xy\)
=2x^2+4xy-6y^2
a) \(\left(x-2y\right)^2+\left(x+2y\right)^2=x^2-4xy+4y^2+x^2+4xy+4y^2=2x^2+8y^2\)
b) \(2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2=2\left(x^2-y^2\right)+x^2+2xy+y^2+x^2-2xy^2+y^2\)
\(=2x^2-2y^2+2x^2+2y^2=4x^2\)
\(a,\left(x-2y\right)^2+\left(x+2y\right)^2\)
\(=\left(x^2-4xy+4y^2\right)
+\left(x^2+4xy+4y^2\right)\)
\(=2x^2+8y^2\)
\(b,2\left(x-y\right).\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)
\(=2\left(x^2-y^2\right)+\left(x^2+2xy+y^2\right)+\left(x^2-2xy+y^2\right)\)
\(=2x^2-2y^2+2x^2+2y^2\)
\(=4x^2\)
Rút gọn biểu thức
\(=\left(1-y^2\right)z+2y^2+\left(-x^2\right)y+2x^2-2\)
nhan ca tu va mau voi\(\sqrt{2}\) ta dc
\(\frac{\sqrt{2x-4\sqrt{2x-4}}}{2}=\frac{\sqrt{2x-4-4\sqrt{2x-4}}}{2}=\frac{\sqrt{\left(\sqrt{2x-4}-2\right)^2}}{2}\)(dkx>=2)
=\(\frac{\left|\sqrt{2x-4}-2\right|}{2}\)
1)
a)
\(\sqrt{11-6\sqrt{2}}=\sqrt{2-2.3.\sqrt{2}+9}=\left|\sqrt{2}-3\right|=3-\sqrt{2}\)
\(A=3-\sqrt{2}+3+\sqrt{2}=6\)
b)
\(B^2=24+2\sqrt{12^2-4.11}=24+2\sqrt{100}=24+20=44\)
\(B=\sqrt{44}=2\sqrt{11}\)
A = x - 2y - \(\sqrt{x^2-4x+4y^2}\)
A = x - 2y - \(\sqrt{\left(x-2y\right)^2}\)
A = x - 2y - x + 2y
A = 0
\(\sqrt{\left(x-2y\right)^2}=\left|x-2y\right|\) bạn nha, vì chưa biết biểu thức x-2y>0 hay <0 nên không thể bỏ được dấu giá trị tuyệt đối, bạn nha :DD