chứng minh rằng
a)76 +75 - 74 \(⋮\)11
b)106-57 \(⋮\)59
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
106 - 57 = (2.5)6 - 56.5 = 26.56 - 56.5=56.(26 - 5)=56.59⋮ 59
Sơ đồ con đường |
Lời giải chi tiết |
|
Xét 7 6 + 7 5 − 7 4 = 7 4 . 7 2 + 5 − 1 = 7 4 .55 Áp dụng tính chất chia hết của một tích: 55 ⋮ 11 ⇒ 7 4 .55 ⋮ 11 ⇒ 7 6 + 7 5 − 7 4 ⋮ 11 |
\(7^6+7^5-7^4⋮555\)
\(=7^6+7^5-7^4\)
\(=7^{6+5-4}\)
\(=7^7⋮̸555\)
=> Biểu thức trên không chia hết cho 555
a) \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11.\left(a+b\right)\)
Vì 11⋮11 nên \(\overline{ab}+\overline{ba}\)⋮11
a) 7⁶ + 7⁵ - 7⁴
= 7⁴.(7² + 7 - 1)
= 7⁴.55 ⋮ 55
Vậy (7⁶ + 7⁵ - 7⁴) ⋮ 55
b) 81⁷ - 27⁹ + 3²⁹
= (3⁴)⁷ - (3³)⁹ + 3²⁹
= 3²⁸ - 3²⁷ + 3²⁹
= 3²⁶.(3² - 3 + 3³)
= 3²⁶.(9 - 3 + 27)
= 3²⁶.33 ⋮ 33
Vậy (81⁷ - 27⁹ + 3²⁹) ⋮ 33
Lời giải chi tiết:
82 < 86 | 74 < 80 | 17 = 10 + 7 |
95 > 91 | 62 > 59 | 76 > 50 + 20 |
55 < 57 | 44 < 55 | 16 < 12 + 5 |
A = 776 + 775 + 774
= 774(72 + 7 + 1)
= 774(49 + 7 + 1)
= 774 . 57
Vậy A chia hết cho 57
\(A=7^{76}+7^{75}+7^{74}=7^{74}\cdot7^2+7^{74}\cdot7+7^{74}=7^{74}\left(7^2+7+1\right)=57\cdot7^{74}⋮57\)
a) \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4\left(49+7-1\right)=7^4.55⋮55\)
b) \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\left(32+1\right)=2^{15}.33⋮33\)
c) \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}.5=3^{22}.3^4.5=3^{22}.405⋮405\)
a: \(=7^4\left(7^2+7-1\right)=7^4\cdot55⋮55\)
b: \(=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\cdot33⋮33\)
c: \(=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}\cdot5=3^{22}\cdot405⋮405\)
a, 76 +75 - 74 = 74(72 + 7 - 1) = 74 . 55 = 74 . 5 . 11
Vậy 76 +75 - 74 chia hết cho 11
b, Ta có: 106 - 57 = 26 . 56 - 57 = 56(26 - 5) = 56 . 59
Vậy....