Cho tam giác ABC vuông cân tại A có AB = 4cm, xác định tâm và bán kính của đường tròn ngoại tiếp tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tâm đường tròn ngoại tiếp tam giác ABC nằm trên trung điểm BC
=> Tâm đường tròn là điểm M
Gọi đường tròn (O; R) là đường tròn ngoại tiếp tam giác ABC.
Kẻ đường kính AO cắt (O) tại D.
Hai tam giác vuông ABH và ADC có ∠ABH =∠ADC (cùng chắn cung AC) nên chúng đồng dạng.
=>ABAD=AHAC=>ABAD=AHAC
=>AD=AB⋅ACAH=6⋅103=20(cm)=>AD=AB⋅ACAH=6⋅103=20(cm)
Do đó, R=AD2=202=10(cm)
P.s:Ko chắc
a: O là trung điểm của BC
b: Xét \(\left(\dfrac{BH}{2}\right)\) có
ΔBDH là tam giác nội tiếp
BH là đường kính
Do đó: ΔBDH vuông tại D
Xét \(\left(\dfrac{CH}{2}\right)\)có
ΔCHE nội tiếp đường tròn
CH là đường kính
Do đó: ΔCHE vuông tại E
Xét tứ giác ADHE có
\(\widehat{AEH}=\widehat{ADH}=\widehat{EAD}=90^0\)
Do đó: ADHE là hình chữ nhật
Câu 1:
XétΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(AH^2=4\cdot9=36\)
=>\(AH=\sqrt{36}=6\left(cm\right)\)
Câu 2: Độ dài cạnh hình vuông là:
\(\sqrt{16}=4\left(cm\right)\)
Độ dài đường chéo của hình vuông là:
\(\sqrt{4^2+4^2}=4\sqrt{2}\left(cm\right)\)
Bán kính đường tròn ngoại tiếp hình vuông là:
\(\dfrac{4\sqrt{2}}{2}=2\sqrt{2}\left(cm\right)\)
Câu 5:
Vì \(13^2=12^2+5^2\)
nên đây là tam giác vuông
=>Bán kính đường tròn ngoại tiếp là R=13/2=6,5(cm)
Kéo dài đường cao AH cắt đường tròn ngoại tiếp tam giác ABC tại D . Gọi O là tâm đường tròn ngoại tiếp tam giác ABC
Vì tam giác ABC cân tại A nên AHlà đường trung trực của BC . Nên AD là đường trung trực của BC .
Khi đó O thuộc AD hay AD là đường kính của đường tròn ngoại tiếp tam giác ABC
Tam giác ACD nội tiếp trong (O ) có AD là đường khính suy ra \(\widehat{ACD=90}\)độ
Tam giác ACD vuông tại C nên theo hệ thức liên hệ giữa đường cao và hình chiếu , ta có :
\(CH^2=HA.HD\)
\(\Rightarrow\)\(HD=\frac{CH^2}{HA}=\frac{\left(\frac{BC}{2}\right)^2}{HA}=\frac{\left(\frac{12}{2}^2\right)}{4}=\frac{6^2}{4}=9cm\)
Ta có \(AD=AH+HD=4+9=13\left(cm\right)\)
Vậy bán kính của đường tròn (O ) là :
\(R=\frac{AD}{2}=\frac{13}{2}=6,5\left(cm\right)\)
Chúc bạn học tốt !!!
(Hình)
Diện tích tam giác ABC là:
SABC = 1/2 . AH . BC = 1/2 . 4 . 12 = 24 (cm2)
Vì tam giác ABC cân tại A nên đường cao AH là trung tuyến BC
Nên : BH= HC= 1/2. BC= 1/2 . 12 = 6 (cm)
Trong tam giác AHB:
Áp dụng ĐL pi-ta-go:
AB2 = AH2 + BH2
AB2 = 42 + 62
AB= \(2\sqrt{13}\) (cm)
Vì tam giác ABC cân tại A nên : AB = AC = \(2\sqrt{13}\) (cm)
Ta có : SABC =\(\frac{AB\cdot AC\cdot BC}{4R}\) (R là bán kính đường tòn ngoại tiếp tam giác ABC)
<=> \(24=\frac{2\sqrt{13}.2\sqrt{13}.12}{4R}\)
<=> R= \(\frac{13}{2}\) (cm)
OK
Gọi O là trung điểm BC
Ta có: Tam giác ABC vuông tại A nên đường tròn ngoại tiếp tam giác ABC có cạnh huyền BC là đường kính và O là tâm đường tròn
=> Bán kính là OA,OB,OC