K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2019

A=2x2+10x-1

A=2(x2+5x-\(\frac{1}{2}\))

A=2[x2+2x*\(\frac{5}{2}\)+(\(\frac{5}{2}\))2-(\(\frac{5}{2}\))2-\(\frac{1}{2}\)]

A=2[(x+\(\frac{5}{2}\))2-\(\frac{27}{4}\)]

A=2(x+\(\frac{5}{2}\))2-\(\frac{27}{2}\)

Ta có: 2(x+\(\frac{5}{2}\))2≥0

⇒ 2(x+\(\frac{5}{2}\))2-\(\frac{27}{2}\)\(\frac{-27}{2}\)

⇒ Amin=\(\frac{-27}{2}\) khi x+\(\frac{5}{2}\)=0⇒x=\(\frac{-5}{2}\).

Hơi dài nhưng đầy đủ nha!!!!!

24 tháng 10 2019

cảm ơn ạ

24 tháng 10 2019

\(A=2x^2+10x-1\)

\(=2\left(x^2+5x-\frac{1}{2}\right)\)

\(=2\left(x^2+2x.\frac{5}{2}+\frac{25}{4}-\frac{27}{4}\right)\)

\(=2\left[\left(x^2+\frac{5}{2}\right)^2-\frac{27}{4}\right]\)

\(=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\ge\frac{-27}{2}\)(Vì \(\left(x+\frac{5}{2}\right)^2\ge0\))

Dấy " = " xảy ra khi :

\(x+\frac{5}{2}=0\)

\(\Leftrightarrow x=\frac{-5}{2}\)

Vậy GTNN của A là \(\frac{-27}{2}\)khi \(x=\frac{-5}{2}\)

          Hk tốt ~

25 tháng 10 2019

\(A=x^2+4x+100\)

\(A=x^2+2.x.2+2^2+96\)

\(A=\left(x+2\right)^2+96\)

           \(\left(x+2\right)^2+96\le0\)

           \(\left(x+2\right)^2+96\le96\)

    \(\Leftrightarrow A\le96\)

\(A_{min}\Leftrightarrow A=10\)

Dấu "=" xảy ra : \(\left(x+2\right)^20\)

                             \(x+2=0\)

                             \(x=-2\)

     

25 tháng 10 2019

Thay hộ mik cái dấu \(\le\)thành dấu \(\ge\)vs ak

30 tháng 1 2016

x=-3

y=-5

z=-1

a) Vì với mọi giá trị nguyên của x nên

Dấu “=” xảy ra khi x2 = 0 hay x = 0.

Vậy A đạt giá trị nhỏ nhất 2 021 tại x = 0.

b) Vì với mọi giá trị nguyên của x nên với mọi giá trị nguyên của x.

Vì với mọi giá trị nguyên của x nên với mọi giá trị nguyên của x.

Do đó với mọi giá trị nguyên của x.

Suy ra với mọi giá trị nguyên của x.

Dấu “=” xảy ra khi x22 = 0 và x20 = 0 hay x = 0.

Vậy B đạt giá trị lớn nhất bằng 2 022 khi x = 0. 

7 tháng 1 2016

lớn nhất = 18

nhỏ nhất = -18

7 tháng 1 2016

Lớn nhất : 18

          Bé nhất : -18

12 tháng 9 2021

a) \(A=x^2+3x+4=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)

\(minA=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{3}{2}\)

b) \(B=2x^2-x+1=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)

\(minB=\dfrac{7}{8}\Leftrightarrow x=\dfrac{1}{4}\)

c) \(C=5x^2+2x-3=5\left(x+\dfrac{1}{5}\right)^2-\dfrac{16}{5}\ge-\dfrac{16}{5}\)

\(minC=-\dfrac{16}{5}\Leftrightarrow x=-\dfrac{1}{5}\)

d) \(D=4x^2+4x-24=\left(2x+1\right)^2-25\ge-25\)

\(minD=-25\Leftrightarrow x=-\dfrac{1}{2}\)

e) \(E=x^2+6x-11=\left(x+3\right)^2-20\ge-20\)

\(minE=-20\Leftrightarrow x=-3\)

f) \(G=\dfrac{1}{4}x^2+x-\dfrac{1}{3}=\left(\dfrac{1}{2}x+1\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)

\(minG=-\dfrac{4}{3}\Leftrightarrow x=-2\)

12 tháng 9 2021

\(A=x^2+3x+4=\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{7}{4}=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\)

Do \(\left(x+\dfrac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow A=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)

\(minA=\dfrac{7}{4}\Leftrightarrow x+\dfrac{3}{2}=0\Leftrightarrow x=-\dfrac{3}{2}\)

Mấy câu còn lại làm tương tự nhé em^^