\(2x\sqrt x +12x +22\sqrt x+12 \over (\sqrt x+1)(\sqrt x+2)(\sqrt x+3) \)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\) ( SỬA ĐỀ)
\(\sqrt{x-1-2.2.\sqrt{x-1}+4}+\sqrt{x-1-2.3.\sqrt{x-1}+9}=1\)
\(|x-1-2|+|x-1-3|=1\)
\(|x-3|+|x-4|=1\)
Với \(x\le3\)thì PT thành \(3-x+4-x=1\) \(\Rightarrow-2x=-6\Rightarrow x=3\)(thõa mãn)
Với \(3\le x< 4\)thì PT thành \(x-3+4-x=1\Leftrightarrow0x=0\Rightarrow\)Đúng với mọi x từ \(3\le x< 4\)
Với \(x\ge4\)thì PT thành \(x-3+x-4=1\Leftrightarrow2x=8\Leftrightarrow x=4\)(thõa mãn)
Vậy \(3\le x\le4\)
1.
ĐKXĐ: ...
\(x^2-x+2=1\sqrt{x^2+x-1}+1\sqrt{x-x^2+1}\)
\(\Rightarrow x^2-x+2\le\dfrac{1}{2}\left(1+x^2+x-1\right)+\dfrac{1}{2}\left(1+x-x^2+1\right)\)
\(\Rightarrow x^2-2x+1\le0\)
\(\Rightarrow\left(x-1\right)^2\le0\)
\(\Rightarrow x=1\)
Thử lại ta thấy thỏa mãn
b.
ĐKXĐ: ...
Ta có:
\(VP=3\left(x-2\right)^2+2\ge2\)
\(VT=1\sqrt{2x-3}+1\sqrt{5-2x}\le\dfrac{1}{2}\left(1+2x-3\right)+\dfrac{1}{2}\left(1+5-2x\right)=2\)
\(\Rightarrow VT\le VP\)
Đẳng thức xảy ra khi:
\(\left\{{}\begin{matrix}x-2=0\\1=2x-3\\1=5-2x\end{matrix}\right.\) \(\Leftrightarrow x=2\)
1/\(4x^4+12x^3-47x^2+12x+4=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x^3+20x^2-7x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x-1\right)\left(2x^2+11x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{2}\\x=\frac{-11\pm\sqrt{105}}{4}\end{matrix}\right.\)
Vậy ....
a/ ĐKXĐ: \(2\le x\le10\)
\(\Leftrightarrow\sqrt{x-2}+\sqrt{10-x}-x^2+12x-20-20=0\)
Đặt \(\sqrt{x-2}+\sqrt{10-x}=a>0\)
\(\Rightarrow a^2=8+2\sqrt{-x^2+12x-20}\Rightarrow-x^2+12x-20=\frac{\left(a^2-8\right)^2}{4}\)
Phương trình trở thành:
\(a+\frac{\left(a^2-8\right)^2}{4}-20=0\Leftrightarrow a^4-16a^2+4a-16=0\)
\(\Leftrightarrow a^2\left(a-4\right)\left(a+4\right)+4\left(a-4\right)=0\)
\(\Leftrightarrow\left(a-4\right)\left(a^3+4a^2+4\right)=0\)
\(\Leftrightarrow a=4\) (do \(a^3+4a^2+4>0\) \(\) \(\forall a>0\))
\(\Leftrightarrow\sqrt{x-2}+\sqrt{10-x}=4\)
Mà \(\sqrt{x-2}+\sqrt{10-x}\le\sqrt{2\left(x-2+10-x\right)}=4\)
Dấu "=" xảy ra khi và chỉ khi \(x-2=10-x\Leftrightarrow x=6\)
b/ ĐKXĐ:...
Ta có:
\(VT=1.\sqrt{x^2+x-1}+1.\sqrt{x-x^2+1}\le\frac{1+x^2+x-1}{2}+\frac{1+x-x^2+1}{2}=x+1\)
\(\Rightarrow x^2-x+2\le x+1\)
\(\Leftrightarrow x^2-2x+1\le0\)
\(\Leftrightarrow\left(x-1\right)^2\le0\Rightarrow x=1\)
Vậy pt có nghiệm duy nhất \(x=1\)