K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔBAC vuông tại B có góc A=45 độ

nên ΔBAC vuông cân tại B

=>BA=BC=2a

AC=căn AB^2+BC^2=2a*căn 2

b: BH=BA*BC/AC=4a^2/2*a*căn 2=a*căn 2

c: S ABC=1/2*2a*2a=2a^2

d: C=2a+2a+2a*căn 2=4a+2a*căn 2

2 tháng 10 2021

1.

\(a,\sin\widehat{B}=\sin60^0=\dfrac{AC}{BC}=\dfrac{\sqrt{3}}{2}\Leftrightarrow AC=\dfrac{12\sqrt{3}}{2}=6\sqrt{3}\left(cm\right)\\ b,AC^2=CH\cdot BC\left(HTL.\Delta\right)\\ \Rightarrow CH=\dfrac{AC^2}{BC}=9\left(cm\right)\)

 

2 tháng 10 2021

Tim Gia Tri Nho Nhat Cua 

a) A = x - 4 can x + 9

b) B = x - 3 can x - 10 

c ) C = x - can x + 1 

d ) D = x + can x + 2 

AB+BC<AC

nên ko có tam giác ABC thỏa mãn nha bạn

20 tháng 2 2021

a, Kẻ \(CH\perp AB\Rightarrow CH=AC.sin60^o=\dfrac{8.\sqrt{3}}{2}=4\sqrt{3}\)

\(\Rightarrow BC=\dfrac{CH}{sin45^o}=\dfrac{4\sqrt{3}}{\dfrac{\sqrt{2}}{2}}=4\sqrt{6}\)

\(AH=AC.cosA=8.cos60^o=4\)

\(BH=\dfrac{CH}{tan45^o}=4\sqrt{3}\)

\(\Rightarrow AB=AH+BH=4\sqrt{3}+4\)

\(\widehat{C}=180^o-\widehat{A}-\widehat{B}=180^o-60^o-45^o=75^o\)

b, \(S_{ABC}=\dfrac{1}{2}.AC.AB.sinA=\dfrac{1}{2}.8.\left(4+4\sqrt{3}\right).sin60^o=24+8\sqrt{3}\)

20 tháng 2 2021

a) \(\widehat{C}\)= 180-(60+45)=75o

11 tháng 1 2018

a. hạ đương cao AK

suy ra BK=KC=3:2=1.5(cm)

Xét tam giac ABC có góc AKB=90

AK^2+BK^2=AB^2(đl py-ta-go)

AK=\(\dfrac{3\sqrt{3}}{2}\)

SABC=\(\dfrac{1}{2}.\dfrac{3\sqrt{3}}{2}.3=\dfrac{9\sqrt{3}}{4}\)

a: BC/sinA=2R

=>2R=3/sin40

=>\(R\simeq2,33\left(cm\right)\)

b: góc B=180-40-60=80 độ 

\(\dfrac{AC}{sinB}=\dfrac{BC}{sinA}=\dfrac{AB}{sinC}\)

=>AC/sin80=3/sin40=AB/sin60

=>\(AC\simeq5\left(cm\right)\) và \(AB\simeq4,04\left(cm\right)\)

c: \(AM=\sqrt{\dfrac{AB^2+AC^2}{2}-\dfrac{BC^2}{4}}=\sqrt{\dfrac{5^2+4,04^2}{2}-\dfrac{3^2}{4}}\simeq4,29\left(cm\right)\)

Bài 1:

a: Xét ΔBAC vuông tại A có 

\(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{C}=60^0\)

Xét ΔBAC vuông tại A có 

\(AB=BC\cdot\sin60^0\)

\(\Leftrightarrow BC=4\sqrt{3}\left(cm\right)\)

\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)

Bài 1:

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{ACB}+\widehat{ABC}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{ABD}+30^0=90^0\)

hay \(\widehat{ABD}=60^0\)

Xét ΔABD có BA=BD(gt)

nên ΔBAD cân tại B(Định nghĩa tam giác cân)

Xét ΔABD cân tại B có \(\widehat{ABD}=60^0\)(cmt)

nên ΔABD đều(Dấu hiệu nhận biết tam giác đều)

Suy ra: \(\widehat{BAD}=60^0\)

Ta có: \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)(tia AD nằm giữa hai tia AB và AC)

\(\Leftrightarrow\widehat{CAD}+60^0=90^0\)

hay \(\widehat{CAD}=30^0\)

b) Xét ΔDAC có \(\widehat{DAC}=\widehat{DCA}\left(=30^0\right)\)

nên ΔDAC cân tại D(Định lí đảo của tam giác cân)

Xét ΔADE vuông tại E và ΔCDE cân tại E có 

DA=DC(ΔDAC cân tại D)

DE chung

Do đó: ΔADE=ΔCDE(Cạnh huyền-góc nhọn)

c) Xét ΔABC vuông tại A có \(\widehat{ACB}=30^0\)(gt)

nên BC=2AB(Định lí tam giác vuông)

Suy ra: \(BC=2\cdot5=10\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=10^2-5^2=75\)

hay \(AC=5\sqrt{3}\left(cm\right)\)

 

4 tháng 7 2021

giúp với mn ơi