K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 10 2019

\(9=\left(\frac{1}{2}.2x+\frac{1}{\sqrt{6}}.\sqrt{6}y+\frac{1}{\sqrt{3}}\sqrt{3}z\right)^2\le\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{3}\right)\left(4x^2+6y^2+3z^2\right)\)

\(\Rightarrow A\ge\frac{9}{\frac{1}{4}+\frac{1}{6}+\frac{1}{3}}=12\)

\(A_{min}=12\) khi \(\left\{{}\begin{matrix}x+y+z=3\\4x=6y=3z\end{matrix}\right.\)

11 tháng 9 2020

Áp dụng BĐT Cauchy-Schwarz:  \(\left(\frac{1}{2^2}+\frac{1}{\left(\sqrt{6}\right)^2}+\frac{1}{\left(\sqrt{3}\right)^2}\right)\left(\left(2x\right)^2+\left(y\sqrt{6}\right)^2+\left(z\sqrt{3}\right)^2\right)\ge\)

\(\left(\frac{1}{2}.2x+\frac{1}{\sqrt{6}}.y\sqrt{6}+\frac{1}{\sqrt{3}}.z\sqrt{3}\right)^2=\left(x+y+z\right)^2=3^2=9\)

\(\Rightarrow\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{3}\right)\left(4x^2+6y^2+3z^2\right)\ge9\)

\(\Leftrightarrow\frac{3}{4}A\ge9\Leftrightarrow A\ge12\)

Dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}4x=6y=3z\\x+y+z=3\end{cases}\Leftrightarrow x=1,y=\frac{2}{3},z=\frac{4}{3}}\)

11 tháng 9 2020

Áp dụng bđt svacxo: \(\frac{x_1^2}{y_1}+\frac{x_2^2}{y_2}+\frac{x_3^2}{y_3}\ge\frac{\left(x_1+x_2+x_3\right)^2}{y_1+y_2+y_3}\)(Dấu "=" xảy ra <=> \(\frac{x_1}{y_1}=\frac{x_2}{y_2}=\frac{x_3}{y_3}\))

CM bđt đúng: Áp dụng bđt buniacopski

\(\left[\left(\frac{x_1}{\sqrt{y_1}}\right)^2+\left(\frac{x_2}{\sqrt{y_2}}\right)+\left(\frac{x_3}{\sqrt{y_3}}\right)\right]\left[\left(\sqrt{y_1}\right)^2+\left(\sqrt{y_2}\right)^2+\left(\sqrt{y}\right)^2\right]\)

\(\ge\left(\frac{x_1}{\sqrt{y_1}}+\sqrt{y_1}+\frac{x_2}{\sqrt{y_2}}+\frac{x_3}{\sqrt{y_3}}+\sqrt{y_2}+\frac{x_3}{y_3}\right)^2\)

<=> \(\left(\frac{x_1^2}{y_1}+\frac{x_2^2}{y_2}+\frac{x_3}{y_3}\right)\left(y_1+y_2+y_3\right)\) \(\ge\left(x_1+x_2+x_3\right)^2\)

Áp dụng bđt vaofA, ta có:

A = \(4x^2+6y^2+3z^2=\frac{x^2}{\frac{1}{4}}+\frac{y^2}{\frac{1}{6}}+\frac{z_2}{\frac{1}{3}}\ge\frac{\left(x+y+z\right)^2}{\frac{1}{4}+\frac{1}{6}+\frac{1}{3}}=\frac{9}{\frac{3}{4}}=12\)

 Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{3}}\\x+y+z=3\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=\frac{2}{3}\\z=\frac{4}{3}\end{cases}}\)

Vậy MinA = 12 <=> x = 1; y = 2/3; z = 4/3

15 tháng 8 2021

Giúp mình với ạ,cảm ơn mọi người

b: Ta có: \(B=x^2+4x+9y^2-6y-1\)

\(=x^2+4x+4+9y^2-6y+1-6\)

\(=\left(x+2\right)^2+\left(3y-1\right)^2-6\ge-6\forall x,y\)

Dấu '=' xảy ra khi x=-2 và \(y=\dfrac{1}{3}\)

10 tháng 4 2017

Câu 2-Ta có x^2+y^2=5

(x+y)^2-2xy=5

Đặt x+y=S. xy=P

S^2-2P=5

P=(S^2-5)/2

Ta lại có P=x^3+y^3=(x+y)^3-3xy(x+y)=S^3-3SP=S^3-3S(S^2-5)/2

Rùi tự tính

10 tháng 4 2017

Câu1

Ta có P<=a+a/4+b+a/12+b/3+4c/3 (theo bdt cô sy)

=> P<=4/3(a+b+c)=4/3

Vậy Max p =4/3 khi a=4b=16c 

14 tháng 11 2021

vãi cả 2015 ạ =))

NV
10 tháng 1 2021

\(P+3=x+\left(y^2+1\right)+\left(z^3+1+1\right)\ge x+2y+3z\)

\(\Rightarrow P\ge x+2y+3z-3\)

\(6=\dfrac{1}{x}+\dfrac{4}{2y}+\dfrac{9}{3z}\ge\dfrac{\left(1+2+3\right)^2}{x+2y+3z}\)

\(\Rightarrow x+2y+3z\ge6\Rightarrow P\ge3\)

Dấu "=" xảy ra khi \(x=y=z=1\)

12 tháng 6 2016

bạn tham khảo TIM GTLN CUA TONG X+Y+Z BIET X+5Y = 21 ; 2X+3Z = 51 ; X,Y,Z >= 0? | Yahoo Hỏi & Đáp

12 tháng 6 2016

Em mới học lớp 7

31 tháng 5 2020

Theo BĐT Cauchy cho 2 số dương, ta có:

\(2x^2+y^2+5=\left(x^2+y^2\right)+\left(x^2+1\right)+4\ge2\left(xy+x+2\right)\)

\(\Rightarrow\frac{x}{2x^2+y^2+5}\le\frac{x}{2\left(xy+x+2\right)}\)(1)

Tương tự ta có: \(\frac{2y}{6y^2+z^2+6}\le\frac{2y}{4\left(yz+y+1\right)}=\frac{y}{2\left(yz+y+1\right)}\)(2)

\(\frac{4z}{3z^2+4x^2+16}\le\frac{4z}{4\left(zx+2z+2\right)}=\frac{z}{zx+2z+2}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{x}{2x^2+y^2+5}+\frac{2y}{6y^2+z^2+6}+\frac{4z}{3z^2+4x^2+16}\)

\(\le\frac{1}{2}\left(\frac{x}{xy+x+2}+\frac{y}{yz+y+1}+\frac{2z}{zx+2z+2}\right)\)

\(=\frac{1}{2}\left(\frac{zx}{xyz+xz+2z}+\frac{xyz}{xyz^2+xyz+xz}+\frac{2z}{zx+2z+2}\right)\)

\(=\frac{1}{2}\left(\frac{zx}{2+xz+2z}+\frac{2}{2z+2+xz}+\frac{2z}{zx+2z+2}\right)\)(Do xyz = 2)

\(=\frac{1}{2}.\frac{zx+2z+2}{zx+2z+2}=\frac{1}{2}\)

Đẳng thức xảy ra khi x = y = 1; z = 2

29 tháng 7 2017

Ta có: \(\sqrt{x^2+xy+y^2}=\sqrt{x^2+xy+\frac{y^2}{4}+\frac{3y^2}{4}}=\sqrt{\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}}\)

Tương tự ta viết lại A và áp dụng BĐT Mipcopxki :

\(A=\sqrt{\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}}+\sqrt{\left(y+\frac{z}{2}\right)^2+\frac{3z^2}{4}}+\sqrt{\left(z+\frac{x}{2}\right)^2+\frac{3x^2}{4}}\)

\(=\sqrt{\left(x+\frac{y}{2}\right)^2+\left(\frac{\sqrt{3}y}{2}\right)^2}+\sqrt{\left(y+\frac{z}{2}\right)^2+\left(\frac{\sqrt{3}z}{2}\right)^2}+\sqrt{\left(z+\frac{x}{2}\right)^2+\left(\frac{\sqrt{3}x}{2}\right)^2}\)

\(\ge\sqrt{\left(\frac{3\left(x+y+z\right)}{2}\right)^2+\left(\frac{\sqrt{3}\left(x+y+z\right)}{2}\right)^2}\)

\(\ge\sqrt{\left(\frac{3\cdot3}{2}\right)^2+\left(\frac{\sqrt{3}\cdot3}{2}\right)^2}=\sqrt{27}\)

Xảy ra khi x=y=z=1

14 tháng 10 2015

rất tiếc em mới học lớp 6

20 tháng 1 2022

dhgxkkkkkkkkkkkkkkkkkkkkk