K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 8 2021

1.

ĐKXĐ: \(x< 5\)

\(\Leftrightarrow\sqrt{\dfrac{42}{5-x}}-3+\sqrt{\dfrac{60}{7-x}}-3=0\)

\(\Leftrightarrow\dfrac{\dfrac{42}{5-x}-9}{\sqrt{\dfrac{42}{5-x}}+3}+\dfrac{\dfrac{60}{7-x}-9}{\sqrt{\dfrac{60}{7-x}}+3}=0\)

\(\Leftrightarrow\dfrac{9x-3}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{9x-3}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}=0\)

\(\Leftrightarrow\left(9x-3\right)\left(\dfrac{1}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{1}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}\right)=0\)

\(\Leftrightarrow x=\dfrac{1}{3}\)

NV
6 tháng 8 2021

b.

ĐKXĐ: \(x\ge2\)

\(\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}-\sqrt{x-2}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{x-2}-\sqrt{x+3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-2=x+3\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=2\)

11 tháng 10 2021

\(A=\dfrac{\left(2-\sqrt[3]{x}\right)\left(4+2\sqrt[3]{x}+\sqrt[3]{x^2}\right)}{2+\sqrt[3]{x}}:\dfrac{4+2\sqrt[3]{x}+\sqrt[3]{x^2}}{2+\sqrt[3]{x}}+\dfrac{\sqrt[3]{x^2}-2\sqrt[3]{x}+2\sqrt[3]{x}}{\sqrt[3]{x}-2}.\dfrac{\left(\sqrt[3]{x}-2\right)\left(\sqrt[3]{x}+2\right)}{\sqrt[3]{x}\left(\sqrt[3]{x}+2\right)}\)

\(=\dfrac{\left(2-\sqrt[3]{x}\right)\left(4+2\sqrt[3]{x}+\sqrt[3]{x^2}\right)}{2+\sqrt[3]{x}}.\dfrac{2+\sqrt[3]{x}}{4+2\sqrt[3]{x}+\sqrt[3]{x^2}}+\dfrac{\sqrt[3]{x}.\sqrt[3]{x}}{\sqrt[3]{x}-2}.\dfrac{\left(\sqrt[3]{x}-2\right)\left(\sqrt[3]{x}+2\right)}{\sqrt[3]{x}\left(\sqrt[3]{x}+2\right)}\)

\(=2-\sqrt[3]{x}+\sqrt[3]{x}=2\)

4) Ta có: \(\left(x+3\right)\cdot\sqrt{10-x^2}=x^2-x-12\)

\(\Leftrightarrow\left(x+3\right)\cdot\sqrt{10-x^2}-\left(x-4\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(\sqrt{10-x^2}-x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\\sqrt{10-x^2}=x-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\10-x^2=x^2-8x+16\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x^2-8x+16-10+x^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\2x^2-8x+6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\2\left(x^2-4x+3\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\\left(x-1\right)\left(x-3\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\\x=3\end{matrix}\right.\)

22 tháng 6 2021

\(\dfrac{8-x}{2+\sqrt[3]{x}}:\left(2+\dfrac{\sqrt[3]{x^2}}{2+\sqrt[3]{x}}\right)+\left(\sqrt[3]{x}+\dfrac{2\sqrt[3]{x}}{\sqrt[3]{x}-2}\right).\left(\dfrac{\sqrt[3]{x^2}-4}{\sqrt[3]{x^2}+2\sqrt[3]{x}}\right)\)

\(\dfrac{\left(\sqrt[3]{x}-2\right)\left(\sqrt[3]{x^2}+2\sqrt[3]{x}+4\right)}{2+\sqrt[3]{x}}:\left(\dfrac{4+2\sqrt[3]{x}+\sqrt[3]{x^2}}{2+\sqrt[3]{x}}\right)+\dfrac{\sqrt[3]{x^2}}{\sqrt[3]{x}-2}.\left(\dfrac{\left(\sqrt[3]{x}-2\right)\left(\sqrt[3]{x}+2\right)}{\sqrt[3]{x}\left(\sqrt[3]{x}+2\right)}\right)\)

\(\dfrac{\left(\sqrt[3]{x}-2\right)\left(\sqrt[3]{x^2}+2\sqrt[3]{x}+4\right)}{2+\sqrt[3]{x}}.\dfrac{2+\sqrt[3]{x}}{\sqrt[3]{x^2}+2\sqrt[3]{x}+4}+\dfrac{\sqrt[3]{x^2}}{\sqrt[3]{x}-2}.\dfrac{\sqrt[3]{x}-2}{\sqrt[3]{x}}\)

\(=\sqrt[3]{x}-2+\sqrt[3]{x}=2\sqrt[3]{x}-2\)

3 tháng 7 2023

1

ĐK: \(x\ge1\)

Đặt \(t=\sqrt{x-1}\left(t\ge0\right)\Rightarrow x=t^2+1\)

Khi đó: 

\(x-2\sqrt{x-1}=16\)

\(\Leftrightarrow t^2-2t+1=16\\ \Leftrightarrow\left(t-1\right)^2=4^2\\ \Leftrightarrow t-1=4\\ \Leftrightarrow t=4+1=5\left(tm\right)\)

\(\Leftrightarrow\sqrt{x-1}=5\)

\(\Leftrightarrow x-1=5^2=25\\ \Leftrightarrow x=25+1=26\left(tm\right)\)

Vậy PT có nghiệm duy nhất x = 26.

2 ĐK: \(3\le x\le1\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{1-x}=0\\\sqrt{x-3}=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

Từ điều kiện và bài giải ta kết luận PT vô nghiệm.

3 ĐK: \(x\ge4\)

\(\Leftrightarrow\sqrt{x-4}=7-2=5\\ \Leftrightarrow x-4=5^2=25\\ \Leftrightarrow x=25+4=29\left(tm\right)\)

Vậy PT có nghiệm duy nhất x = 29.

4

ĐK: \(x\ge1\)

Đặt \(t=\sqrt{x-1}\left(t\ge0\right)\Rightarrow x=t^2+1\)

Khi đó:

\(x-\sqrt{x-2\sqrt{x-1}}=0\\ \Leftrightarrow t^2+1-\sqrt{t^2-2t+1}=0\\ \Leftrightarrow t^2+1-\sqrt{\left(t-1\right)^2}=0\\ \Leftrightarrow t^2+1-\left|t-1\right|=0\left(1\right)\)

Trường hợp 1:

Với \(0\le t< 1\) thì:

\(\left(1\right)\Leftrightarrow t^2+1-\left(1-t\right)=0\\ \Leftrightarrow t^2+t=0\\ \Leftrightarrow t\left(t+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t=0\Rightarrow\sqrt{x-1}=0\Rightarrow x=1\left(nhận\right)\\t=-1\left(loại\right)\end{matrix}\right.\)

Trường hợp 2:

Với \(t\ge1\) thì:

\(\left(1\right)\Leftrightarrow t^2+1-\left(t-1\right)=0\\ \Leftrightarrow t^2-t+2=0\)

\(\Delta=\left(-1\right)^2-4.2=-7< 0\)

=> Loại trường hợp 2.

Vậy PT có nghiệm duy nhất x = 1.

5

ĐK: \(x\ge2\)

Đặt \(\sqrt{x-2}=t\left(t\ge0\right)\Rightarrow x=t^2+2\)

Khi đó:

\(\sqrt{x-2}-\sqrt{x^2-2x}=0\\ \Leftrightarrow\sqrt{x-2}-\sqrt{x}.\sqrt{x-2}=0\\ \Leftrightarrow\sqrt{t^2+2-2}-\sqrt{t^2+2}.\sqrt{t^2+2-2}=0\\ \Leftrightarrow\sqrt{t^2}-\sqrt{t^2+2}.\sqrt{t^2}=0\\ \Leftrightarrow t-\sqrt{t^2+2}.t=0\\ \Leftrightarrow t\left(1-\sqrt{t^2+2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t=0\Rightarrow\sqrt{x-2}=0\Rightarrow x=2\left(tm\right)\\\sqrt{t^2+2}=1\Rightarrow t^2+2=1\Rightarrow t^2=-1\left(loại\right)\end{matrix}\right.\)

Vậy phương trình có nghiệm duy nhất x = 2.

6 Không có ĐK vì đưa về tổng bình lên luôn \(\ge0\)

\(\Leftrightarrow\sqrt{\sqrt{2}^2-2.\sqrt{2}.\sqrt{1}+\sqrt{1}^2}-\sqrt{x^2+2x.\sqrt{2}+\sqrt{2}^2}=0\\ \Leftrightarrow\sqrt{\left(\sqrt{2}-\sqrt{1}\right)^2}-\sqrt{\left(x+\sqrt{2}\right)^2}=0\\ \Leftrightarrow\left|\sqrt{2}-\sqrt{1}\right|-\left|x+\sqrt{2}\right|=0\\ \Leftrightarrow\sqrt{2}-1-\left|x+\sqrt{2}\right|=0\)

Trường hợp 1:

Với \(x\ge-\sqrt{2}\) thì:

\(\left(1\right)\Leftrightarrow\sqrt{2}-1-\left(x+\sqrt{2}\right)=0\\ \Leftrightarrow\sqrt{2}-1-x-\sqrt{2}=0\\ \Leftrightarrow-1-x=0\\ \Leftrightarrow x=-1\left(tm\right)\)

Với \(x< -\sqrt{2}\) thì:

\(\left(1\right)\Leftrightarrow\sqrt{2}-1--\left(x+\sqrt{2}\right)=0\\ \Leftrightarrow\sqrt{2}-1+x+\sqrt{2}=0\\ \Leftrightarrow2\sqrt{2}+1+x=0\\ \Leftrightarrow x=-1-2\sqrt{2}\left(tm\right)\)

Vậy phương trình có 2 nghiệm \(x=-1\) hoặc \(x=-1-2\sqrt{2}\)

a: =>\(x^2\cdot2\sqrt{2}+x\left(2+2\sqrt{2}\right)+4=0\)

\(\text{Δ}=\left(2\sqrt{2}+2\right)^2-4\cdot2\sqrt{2}\cdot4=12-24\sqrt{2}< 0\)

=>PTVN

b: 

\(\Leftrightarrow2x^2+2x+\sqrt{3}-x^2+2\sqrt{3}x+\sqrt{3}=0\)

=>\(x^2+x\left(2\sqrt{3}+2\right)+2\sqrt{3}=0\)

\(\text{Δ}=\left(2\sqrt{3}+2\right)^2-4\cdot2\sqrt{3}=16>0\)

PT có hai nghiệm là;

\(\left\{{}\begin{matrix}x_1=\dfrac{-2\sqrt{3}-2-4}{2}=-\sqrt{3}-3\\x=\dfrac{-2\sqrt{3}-2+4}{2}=-\sqrt{3}+1\end{matrix}\right.\)

 

NV
9 tháng 1 2023

a.

\(\sqrt{x+2\sqrt{x-1}}=2\)

ĐKXĐ: \(x\ge1\)

\(\sqrt{x-1+2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt{x-1}+1\right|=2\)

\(\Leftrightarrow\sqrt{x-1}+1=2\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\)

NV
9 tháng 1 2023

b.

\(\sqrt{4x^2-20x+25}=5-2x\)

\(\Leftrightarrow\sqrt{\left(2x-5\right)^2}=5-2x\)

\(\Leftrightarrow\left|5-2x\right|=5-2x\)

\(\Leftrightarrow5-2x\ge0\)

\(\Leftrightarrow x\le\dfrac{5}{2}\)

c.

ĐKXĐ: \(x\ge3\)

\(\sqrt{x^2-x-6}=\sqrt{x-3}\)

\(\Rightarrow x^2-x-6=x-3\)

\(\Leftrightarrow x^2-2x-3=0\Rightarrow\left[{}\begin{matrix}x=-1\left(loại\right)\\x=3\end{matrix}\right.\)

Bạn đăng từng câu 1 nhé

22 tháng 7 2023

giúp mik câu 1 với 2 nhé

 

a: \(A=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}\cdot\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+2\sqrt{x}+2\)

\(=\sqrt{x}\left(\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)+2\sqrt{x}+2\)

\(=\left(x-\sqrt{x}\right)\left(2\sqrt{x}+1\right)+2\sqrt{x}+2\)

\(=2x\sqrt{x}+x-2x-\sqrt{x}+2\sqrt{x}+2\)

\(=2x\sqrt{x}-x+\sqrt{x}+2\)

b: \(=\dfrac{\sqrt{x}-4+3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}:\dfrac{x-4-x}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{4\left(\sqrt{x}-1\right)}{-4}=-\sqrt{x}+1\)

c: \(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-3x+8\sqrt{x}+5-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+7\sqrt{x}+8}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)