tìm n nguyên để 2n2 + 2n - 3 chia hết cho n+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(=-5^{22}+222+[-122-(100-5^{22})+2022]\)
\(=-5^{22}+222-122-100+5^{22}+2022\\ =(-5^{22}+5^{22})+(222-122-100)+2022\\ =0+0+2022=2022\)
Bài 2:
$2n^2+n-6\vdots 2n+1$
$\Rightarrow n(2n+1)-6\vdots 2n+1$
$\Rightarrow 6\vdots 2n+1$
$\Rightarrow 2n+1\in Ư(6)$
Mà $2n+1$ lẻ nên $2n+1\in \left\{\pm 1; \pm 3\right\}$
$\Rightarrow n\in \left\{0; -1; 1; -2\right\}$
Cách 1: Thực hiện phép chia 2n2 – n + 2 cho 2n + 1 ta có:
2n2 – n + 2 chia hết cho 2n + 1
⇔ 3 ⋮ (2n + 1) hay (2n + 1) ∈ Ư(3)
⇔ 2n + 1 ∈ {±1; ±3}
+ 2n + 1 = 1 ⇔ 2n = 0 ⇔ n = 0
+ 2n + 1 = -1 ⇔ 2n = -2 ⇔ n = -1
+ 2n + 1 = 3 ⇔ 2n = 2 ⇔ n = 1
+ 2n + 1 = -3 ⇔ 2n = -4 ⇔ n = -2.
Vậy n ∈ {-2; -1; 0; 1.}
Cách 2:
Ta có:
2n2 – n + 2 chia hết cho 2n + 1
⇔ 2n + 1 ∈ Ư(3) = {±1; ± 3}.
+ 2n + 1 = 1 ⇔ 2n = 0 ⇔ n = 0
+ 2n + 1 = -1 ⇔ 2n = -2 ⇔ n = -1
+ 2n + 1 = 3 ⇔ 2n = 2 ⇔ n = 1
+ 2n + 1 = -3 ⇔ 2n = -4 ⇔ n = -2.
Vậy n ∈ {-2; -1; 0; 1.}
Chú ý: Đa thức A chia hết cho đa thức B khi phần dư của phép chia bằng 0.
Thực hiện phép chia 2n2 – n + 2 cho 2n + 1 ta có:
2n2 – n + 2 chia hết cho 2n + 1
<=> 3 \(⋮\)( 2n + 1 ) hay ( 2n + 1 ) \(\in\) Ư(3)
<=> 2n + 1 \(\in\) {\(\pm\)1; \(\pm\)3 }
+ 2n + 1 = 1 <=> 2n = 0 <=> n = 0
+ 2n + 1 = -1 <=> 2n = -2 <=> n = -1
+ 2n + 1 = 3 <=> 2n = 2 <=> n = 1
+ 2n + 1 = -3 <=> 2n = -4 <=> n = -2.
Vậy n \(\in\) { -2 ; -1 ; 0 ; 1 }
Thực hiện nhân đa thức và thu gọn
2 n 2 (n + 1) – 2n( n 2 + n – 3) = 6 n ⋮ 6 với mọi giá trị nguyên n.
1:
2n^2+5n-1 chia hết cho 2n-1
=>2n^2-n+6n-3+2 chia hết cho 2n-1
=>2n-1 thuộc {1;-1;2;-2}
mà n nguyên
nên n=1 hoặc n=0
2:
a: A=n(n+1)(n+2)
Vì n;n+1;n+2 là 3 số liên tiếp
nên A=n(n+1)(n+2) chia hết cho 3!=6
b: B=(2n-1)[(2n-1)^2-1]
=(2n-1)(2n-2)*2n
=4n(n-1)(2n-1)
Vì n;n-1 là hai số nguyên liên tiếp
nên n(n-1) chia hết cho 2
=>B chia hết cho 8
c: C=n^2+14n+49-n^2+10n-25=24n+24=24(n+1) chia hết cho 24
Bài 3:
Ta có: \(2n^2+n-7⋮n-2\)
\(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
Bài 1:
$A=(n-1)(2n-3)-2n(n-3)-4n$
$=2n^2-5n+3-(2n^2-6n)-4n$
$=-3n+3=3(1-n)$ chia hết cho $3$ với mọi số nguyên $n$
Ta có đpcm.
Bài 2:
$B=(n+2)(2n-3)+n(2n-3)+n(n+10)$
$=(2n-3)(n+2+n)+n(n+10)$
$=(2n-3)(2n+2)+n(n+10)=4n^2-2n-6+n^2+10n$
$=5n^2+8n-6=5n(n+3)-7(n+3)+15$
$=(n+3)(5n-7)+15$
Để $B\vdots n+3$ thì $(n+3)(5n-7)+15\vdots n+3$
$\Leftrightarrow 15\vdots n+3$
$\Leftrightarrow n+3\in\left\{\pm 1;\pm 3;\pm 5;\pm 15\right\}$
$\Rightarrow n\in\left\{-2;-4;0;-6;-8; 2;12;-18\right\}$
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
học tốt
\(2n^2+2n-3=2n\left(n+1\right)-3⋮n+1\)
\(\Rightarrow3⋮n+1\)
Mà \(n\inℤ\Rightarrow n+1\inℤ\)
\(\Rightarrow n+1\in\left\{-1;1;3;-3\right\}\)
\(\Rightarrow n\in\left\{-2;0;-4;2\right\}\)